layer { name: "input" type: "Input" top: "input" input_param { shape { dim: 1 dim: 3 dim: 512 dim: 512 } } } layer { name: "339" type: "Convolution" bottom: "input" top: "339" convolution_param { num_output: 16 bias_term: false group: 1 pad_h: 3 pad_w: 3 kernel_h: 7 kernel_w: 7 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "340_bn" type: "BatchNorm" bottom: "339" top: "340" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "340" type: "Scale" bottom: "340" top: "340" scale_param { bias_term: true } } layer { name: "341" type: "ReLU" bottom: "340" top: "341" } layer { name: "342" type: "Convolution" bottom: "341" top: "342" convolution_param { num_output: 16 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "343_bn" type: "BatchNorm" bottom: "342" top: "343" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "343" type: "Scale" bottom: "343" top: "343" scale_param { bias_term: true } } layer { name: "344" type: "ReLU" bottom: "343" top: "344" } layer { name: "345" type: "Convolution" bottom: "344" top: "345" convolution_param { num_output: 32 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 dilation: 1 } } layer { name: "346_bn" type: "BatchNorm" bottom: "345" top: "346" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "346" type: "Scale" bottom: "346" top: "346" scale_param { bias_term: true } } layer { name: "347" type: "ReLU" bottom: "346" top: "347" } layer { name: "348" type: "Pooling" bottom: "347" top: "348" pooling_param { pool: MAX kernel_h: 2 kernel_w: 2 stride_h: 2 stride_w: 2 pad_h: 0 pad_w: 0 } } layer { name: "349" type: "Convolution" bottom: "348" top: "349" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "350_bn" type: "BatchNorm" bottom: "349" top: "350" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "350" type: "Scale" bottom: "350" top: "350" scale_param { bias_term: true } } layer { name: "351" type: "Convolution" bottom: "347" top: "351" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 dilation: 1 } } layer { name: "352_bn" type: "BatchNorm" bottom: "351" top: "352" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "352" type: "Scale" bottom: "352" top: "352" scale_param { bias_term: true } } layer { name: "353" type: "ReLU" bottom: "352" top: "353" } layer { name: "354" type: "Convolution" bottom: "353" top: "354" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "355_bn" type: "BatchNorm" bottom: "354" top: "355" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "355" type: "Scale" bottom: "355" top: "355" scale_param { bias_term: true } } layer { name: "356" type: "Eltwise" bottom: "355" bottom: "350" top: "356" eltwise_param { operation: SUM } } layer { name: "357" type: "ReLU" bottom: "356" top: "357" } layer { name: "358" type: "Convolution" bottom: "357" top: "358" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "359_bn" type: "BatchNorm" bottom: "358" top: "359" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "359" type: "Scale" bottom: "359" top: "359" scale_param { bias_term: true } } layer { name: "360" type: "ReLU" bottom: "359" top: "360" } layer { name: "361" type: "Convolution" bottom: "360" top: "361" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "362_bn" type: "BatchNorm" bottom: "361" top: "362" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "362" type: "Scale" bottom: "362" top: "362" scale_param { bias_term: true } } layer { name: "363" type: "Eltwise" bottom: "362" bottom: "357" top: "363" eltwise_param { operation: SUM } } layer { name: "364" type: "ReLU" bottom: "363" top: "364" } layer { name: "365" type: "Concat" bottom: "364" bottom: "357" top: "365" concat_param { axis: 1 } } layer { name: "366" type: "Convolution" bottom: "365" top: "366" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "367_bn" type: "BatchNorm" bottom: "366" top: "367" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "367" type: "Scale" bottom: "367" top: "367" scale_param { bias_term: true } } layer { name: "368" type: "ReLU" bottom: "367" top: "368" } layer { name: "369" type: "Pooling" bottom: "368" top: "369" pooling_param { pool: MAX kernel_h: 2 kernel_w: 2 stride_h: 2 stride_w: 2 pad_h: 0 pad_w: 0 } } layer { name: "370" type: "Pooling" bottom: "368" top: "370" pooling_param { pool: MAX kernel_h: 2 kernel_w: 2 stride_h: 2 stride_w: 2 pad_h: 0 pad_w: 0 } } layer { name: "371" type: "Convolution" bottom: "370" top: "371" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "372_bn" type: "BatchNorm" bottom: "371" top: "372" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "372" type: "Scale" bottom: "372" top: "372" scale_param { bias_term: true } } layer { name: "373" type: "Convolution" bottom: "368" top: "373" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 dilation: 1 } } layer { name: "374_bn" type: "BatchNorm" bottom: "373" top: "374" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "374" type: "Scale" bottom: "374" top: "374" scale_param { bias_term: true } } layer { name: "375" type: "ReLU" bottom: "374" top: "375" } layer { name: "376" type: "Convolution" bottom: "375" top: "376" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "377_bn" type: "BatchNorm" bottom: "376" top: "377" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "377" type: "Scale" bottom: "377" top: "377" scale_param { bias_term: true } } layer { name: "378" type: "Eltwise" bottom: "377" bottom: "372" top: "378" eltwise_param { operation: SUM } } layer { name: "379" type: "ReLU" bottom: "378" top: "379" } layer { name: "380" type: "Convolution" bottom: "379" top: "380" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "381_bn" type: "BatchNorm" bottom: "380" top: "381" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "381" type: "Scale" bottom: "381" top: "381" scale_param { bias_term: true } } layer { name: "382" type: "ReLU" bottom: "381" top: "382" } layer { name: "383" type: "Convolution" bottom: "382" top: "383" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "384_bn" type: "BatchNorm" bottom: "383" top: "384" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "384" type: "Scale" bottom: "384" top: "384" scale_param { bias_term: true } } layer { name: "385" type: "Eltwise" bottom: "384" bottom: "379" top: "385" eltwise_param { operation: SUM } } layer { name: "386" type: "ReLU" bottom: "385" top: "386" } layer { name: "387" type: "Concat" bottom: "386" bottom: "379" top: "387" concat_param { axis: 1 } } layer { name: "388" type: "Convolution" bottom: "387" top: "388" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "389_bn" type: "BatchNorm" bottom: "388" top: "389" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "389" type: "Scale" bottom: "389" top: "389" scale_param { bias_term: true } } layer { name: "390" type: "ReLU" bottom: "389" top: "390" } layer { name: "391" type: "Convolution" bottom: "390" top: "391" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "392_bn" type: "BatchNorm" bottom: "391" top: "392" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "392" type: "Scale" bottom: "392" top: "392" scale_param { bias_term: true } } layer { name: "393" type: "ReLU" bottom: "392" top: "393" } layer { name: "394" type: "Convolution" bottom: "393" top: "394" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "395_bn" type: "BatchNorm" bottom: "394" top: "395" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "395" type: "Scale" bottom: "395" top: "395" scale_param { bias_term: true } } layer { name: "396" type: "Eltwise" bottom: "395" bottom: "390" top: "396" eltwise_param { operation: SUM } } layer { name: "397" type: "ReLU" bottom: "396" top: "397" } layer { name: "398" type: "Convolution" bottom: "397" top: "398" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "399_bn" type: "BatchNorm" bottom: "398" top: "399" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "399" type: "Scale" bottom: "399" top: "399" scale_param { bias_term: true } } layer { name: "400" type: "ReLU" bottom: "399" top: "400" } layer { name: "401" type: "Convolution" bottom: "400" top: "401" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "402_bn" type: "BatchNorm" bottom: "401" top: "402" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "402" type: "Scale" bottom: "402" top: "402" scale_param { bias_term: true } } layer { name: "403" type: "Eltwise" bottom: "402" bottom: "397" top: "403" eltwise_param { operation: SUM } } layer { name: "404" type: "ReLU" bottom: "403" top: "404" } layer { name: "405" type: "Concat" bottom: "404" bottom: "397" bottom: "369" bottom: "390" top: "405" concat_param { axis: 1 } } layer { name: "406" type: "Convolution" bottom: "405" top: "406" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "407_bn" type: "BatchNorm" bottom: "406" top: "407" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "407" type: "Scale" bottom: "407" top: "407" scale_param { bias_term: true } } layer { name: "408" type: "ReLU" bottom: "407" top: "408" } layer { name: "409" type: "Pooling" bottom: "408" top: "409" pooling_param { pool: MAX kernel_h: 2 kernel_w: 2 stride_h: 2 stride_w: 2 pad_h: 0 pad_w: 0 } } layer { name: "410" type: "Convolution" bottom: "408" top: "410" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 dilation: 1 } } layer { name: "411_bn" type: "BatchNorm" bottom: "410" top: "411" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "411" type: "Scale" bottom: "411" top: "411" scale_param { bias_term: true } } layer { name: "412" type: "ReLU" bottom: "411" top: "412" } layer { name: "413" type: "Convolution" bottom: "412" top: "413" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "414_bn" type: "BatchNorm" bottom: "413" top: "414" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "414" type: "Scale" bottom: "414" top: "414" scale_param { bias_term: true } } layer { name: "415" type: "Eltwise" bottom: "414" bottom: "409" top: "415" eltwise_param { operation: SUM } } layer { name: "416" type: "ReLU" bottom: "415" top: "416" } layer { name: "417" type: "Convolution" bottom: "416" top: "417" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "418_bn" type: "BatchNorm" bottom: "417" top: "418" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "418" type: "Scale" bottom: "418" top: "418" scale_param { bias_term: true } } layer { name: "419" type: "ReLU" bottom: "418" top: "419" } layer { name: "420" type: "Convolution" bottom: "419" top: "420" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "421_bn" type: "BatchNorm" bottom: "420" top: "421" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "421" type: "Scale" bottom: "421" top: "421" scale_param { bias_term: true } } layer { name: "422" type: "Eltwise" bottom: "421" bottom: "416" top: "422" eltwise_param { operation: SUM } } layer { name: "423" type: "ReLU" bottom: "422" top: "423" } layer { name: "424" type: "Concat" bottom: "423" bottom: "416" bottom: "409" top: "424" concat_param { axis: 1 } } layer { name: "425" type: "Convolution" bottom: "424" top: "425" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "426_bn" type: "BatchNorm" bottom: "425" top: "426" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "426" type: "Scale" bottom: "426" top: "426" scale_param { bias_term: true } } layer { name: "427" type: "ReLU" bottom: "426" top: "427" } layer { name: "428" type: "Pooling" bottom: "427" top: "428" pooling_param { pool: MAX kernel_h: 2 kernel_w: 2 stride_h: 2 stride_w: 2 pad_h: 0 pad_w: 0 } } layer { name: "429" type: "Convolution" bottom: "428" top: "429" convolution_param { num_output: 256 bias_term: false group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "430_bn" type: "BatchNorm" bottom: "429" top: "430" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "430" type: "Scale" bottom: "430" top: "430" scale_param { bias_term: true } } layer { name: "431" type: "Convolution" bottom: "427" top: "431" convolution_param { num_output: 256 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 2 stride_w: 2 dilation: 1 } } layer { name: "432_bn" type: "BatchNorm" bottom: "431" top: "432" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "432" type: "Scale" bottom: "432" top: "432" scale_param { bias_term: true } } layer { name: "433" type: "ReLU" bottom: "432" top: "433" } layer { name: "434" type: "Convolution" bottom: "433" top: "434" convolution_param { num_output: 256 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "435_bn" type: "BatchNorm" bottom: "434" top: "435" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "435" type: "Scale" bottom: "435" top: "435" scale_param { bias_term: true } } layer { name: "436" type: "Eltwise" bottom: "435" bottom: "430" top: "436" eltwise_param { operation: SUM } } layer { name: "437" type: "ReLU" bottom: "436" top: "437" } layer { name: "438" type: "Convolution" bottom: "437" top: "438" convolution_param { num_output: 256 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "439_bn" type: "BatchNorm" bottom: "438" top: "439" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "439" type: "Scale" bottom: "439" top: "439" scale_param { bias_term: true } } layer { name: "440" type: "ReLU" bottom: "439" top: "440" } layer { name: "441" type: "Convolution" bottom: "440" top: "441" convolution_param { num_output: 256 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "442_bn" type: "BatchNorm" bottom: "441" top: "442" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "442" type: "Scale" bottom: "442" top: "442" scale_param { bias_term: true } } layer { name: "443" type: "Eltwise" bottom: "442" bottom: "437" top: "443" eltwise_param { operation: SUM } } layer { name: "444" type: "ReLU" bottom: "443" top: "444" } layer { name: "445" type: "Concat" bottom: "444" bottom: "437" bottom: "428" top: "445" concat_param { axis: 1 } } layer { name: "446" type: "Convolution" bottom: "445" top: "446" convolution_param { num_output: 256 bias_term: false group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "447_bn" type: "BatchNorm" bottom: "446" top: "447" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "447" type: "Scale" bottom: "447" top: "447" scale_param { bias_term: true } } layer { name: "448" type: "ReLU" bottom: "447" top: "448" } layer { name: "449" type: "Convolution" bottom: "448" top: "449" convolution_param { num_output: 128 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "450_bn" type: "BatchNorm" bottom: "449" top: "450" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "450" type: "Scale" bottom: "450" top: "450" scale_param { bias_term: true } } layer { name: "451" type: "ReLU" bottom: "450" top: "451" } layer { name: "452" type: "Deconvolution" bottom: "451" top: "452" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 4 kernel_w: 4 stride_h: 2 stride_w: 2 } } layer { name: "453" type: "Eltwise" bottom: "452" bottom: "427" top: "453" eltwise_param { operation: SUM } } layer { name: "454" type: "Convolution" bottom: "453" top: "454" convolution_param { num_output: 128 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "455_bn" type: "BatchNorm" bottom: "454" top: "455" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "455" type: "Scale" bottom: "455" top: "455" scale_param { bias_term: true } } layer { name: "456" type: "ReLU" bottom: "455" top: "456" } layer { name: "457" type: "Convolution" bottom: "427" top: "457" convolution_param { num_output: 128 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "458_bn" type: "BatchNorm" bottom: "457" top: "458" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "458" type: "Scale" bottom: "458" top: "458" scale_param { bias_term: true } } layer { name: "459" type: "ReLU" bottom: "458" top: "459" } layer { name: "460" type: "Deconvolution" bottom: "459" top: "460" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 4 kernel_w: 4 stride_h: 2 stride_w: 2 } } layer { name: "461" type: "Eltwise" bottom: "460" bottom: "408" top: "461" eltwise_param { operation: SUM } } layer { name: "462" type: "Convolution" bottom: "461" top: "462" convolution_param { num_output: 128 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "463_bn" type: "BatchNorm" bottom: "462" top: "463" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "463" type: "Scale" bottom: "463" top: "463" scale_param { bias_term: true } } layer { name: "464" type: "ReLU" bottom: "463" top: "464" } layer { name: "465" type: "Convolution" bottom: "456" top: "465" convolution_param { num_output: 128 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "466_bn" type: "BatchNorm" bottom: "465" top: "466" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "466" type: "Scale" bottom: "466" top: "466" scale_param { bias_term: true } } layer { name: "467" type: "ReLU" bottom: "466" top: "467" } layer { name: "468" type: "Deconvolution" bottom: "467" top: "468" convolution_param { num_output: 128 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 4 kernel_w: 4 stride_h: 2 stride_w: 2 } } layer { name: "469" type: "Eltwise" bottom: "468" bottom: "464" top: "469" eltwise_param { operation: SUM } } layer { name: "470" type: "Convolution" bottom: "469" top: "470" convolution_param { num_output: 128 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "471_bn" type: "BatchNorm" bottom: "470" top: "471" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "471" type: "Scale" bottom: "471" top: "471" scale_param { bias_term: true } } layer { name: "472" type: "ReLU" bottom: "471" top: "472" } layer { name: "473" type: "Convolution" bottom: "408" top: "473" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "474_bn" type: "BatchNorm" bottom: "473" top: "474" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "474" type: "Scale" bottom: "474" top: "474" scale_param { bias_term: true } } layer { name: "475" type: "ReLU" bottom: "474" top: "475" } layer { name: "476" type: "Deconvolution" bottom: "475" top: "476" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 4 kernel_w: 4 stride_h: 2 stride_w: 2 } } layer { name: "477" type: "Eltwise" bottom: "476" bottom: "368" top: "477" eltwise_param { operation: SUM } } layer { name: "478" type: "Convolution" bottom: "477" top: "478" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "479_bn" type: "BatchNorm" bottom: "478" top: "479" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "479" type: "Scale" bottom: "479" top: "479" scale_param { bias_term: true } } layer { name: "480" type: "ReLU" bottom: "479" top: "480" } layer { name: "481" type: "Convolution" bottom: "464" top: "481" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "482_bn" type: "BatchNorm" bottom: "481" top: "482" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "482" type: "Scale" bottom: "482" top: "482" scale_param { bias_term: true } } layer { name: "483" type: "ReLU" bottom: "482" top: "483" } layer { name: "484" type: "Deconvolution" bottom: "483" top: "484" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 4 kernel_w: 4 stride_h: 2 stride_w: 2 } } layer { name: "485" type: "Eltwise" bottom: "484" bottom: "480" top: "485" eltwise_param { operation: SUM } } layer { name: "486" type: "Convolution" bottom: "485" top: "486" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "487_bn" type: "BatchNorm" bottom: "486" top: "487" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "487" type: "Scale" bottom: "487" top: "487" scale_param { bias_term: true } } layer { name: "488" type: "ReLU" bottom: "487" top: "488" } layer { name: "489" type: "Convolution" bottom: "472" top: "489" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "490_bn" type: "BatchNorm" bottom: "489" top: "490" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "490" type: "Scale" bottom: "490" top: "490" scale_param { bias_term: true } } layer { name: "491" type: "ReLU" bottom: "490" top: "491" } layer { name: "492" type: "Deconvolution" bottom: "491" top: "492" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 4 kernel_w: 4 stride_h: 2 stride_w: 2 } } layer { name: "493" type: "Eltwise" bottom: "492" bottom: "488" top: "493" eltwise_param { operation: SUM } } layer { name: "494" type: "Convolution" bottom: "493" top: "494" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "495_bn" type: "BatchNorm" bottom: "494" top: "495" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "495" type: "Scale" bottom: "495" top: "495" scale_param { bias_term: true } } layer { name: "496" type: "ReLU" bottom: "495" top: "496" } layer { name: "497" type: "Convolution" bottom: "472" top: "497" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "498_bn" type: "BatchNorm" bottom: "497" top: "498" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "498" type: "Scale" bottom: "498" top: "498" scale_param { bias_term: true } } layer { name: "499" type: "ReLU" bottom: "498" top: "499" } layer { name: "500" type: "Deconvolution" bottom: "499" top: "500" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 1 pad_w: 1 kernel_h: 4 kernel_w: 4 stride_h: 2 stride_w: 2 } } layer { name: "501" type: "Eltwise" bottom: "500" bottom: "496" top: "501" eltwise_param { operation: SUM } } layer { name: "502" type: "Convolution" bottom: "501" top: "502" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "503_bn" type: "BatchNorm" bottom: "502" top: "503" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "503" type: "Scale" bottom: "503" top: "503" scale_param { bias_term: true } } layer { name: "504" type: "ReLU" bottom: "503" top: "504" } layer { name: "505" type: "Convolution" bottom: "456" top: "505" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "506_bn" type: "BatchNorm" bottom: "505" top: "506" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "506" type: "Scale" bottom: "506" top: "506" scale_param { bias_term: true } } layer { name: "507" type: "ReLU" bottom: "506" top: "507" } layer { name: "508" type: "Deconvolution" bottom: "507" top: "508" convolution_param { num_output: 64 bias_term: false group: 1 pad_h: 2 pad_w: 2 kernel_h: 8 kernel_w: 8 stride_h: 4 stride_w: 4 } } layer { name: "509" type: "Eltwise" bottom: "508" bottom: "504" top: "509" eltwise_param { operation: SUM } } layer { name: "510" type: "Convolution" bottom: "509" top: "510" convolution_param { num_output: 64 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "511_bn" type: "BatchNorm" bottom: "510" top: "511" batch_norm_param { use_global_stats: true eps: 9.999999747378752e-06 } } layer { name: "511" type: "Scale" bottom: "511" top: "511" scale_param { bias_term: true } } layer { name: "512" type: "ReLU" bottom: "511" top: "512" } layer { name: "513" type: "Convolution" bottom: "512" top: "513" convolution_param { num_output: 256 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "514" type: "ReLU" bottom: "513" top: "514" } layer { name: "515" type: "Convolution" bottom: "514" top: "515" convolution_param { num_output: 1 bias_term: true group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "516" type: "Convolution" bottom: "512" top: "516" convolution_param { num_output: 256 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "517" type: "ReLU" bottom: "516" top: "517" } layer { name: "wh" type: "Convolution" bottom: "517" top: "wh" convolution_param { num_output: 2 bias_term: true group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "519" type: "Convolution" bottom: "512" top: "519" convolution_param { num_output: 256 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "520" type: "ReLU" bottom: "519" top: "520" } layer { name: "kps" type: "Convolution" bottom: "520" top: "kps" convolution_param { num_output: 34 bias_term: true group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "522" type: "Convolution" bottom: "512" top: "522" convolution_param { num_output: 256 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "523" type: "ReLU" bottom: "522" top: "523" } layer { name: "reg" type: "Convolution" bottom: "523" top: "reg" convolution_param { num_output: 2 bias_term: true group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "525" type: "Convolution" bottom: "512" top: "525" convolution_param { num_output: 256 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "526" type: "ReLU" bottom: "525" top: "526" } layer { name: "527" type: "Convolution" bottom: "526" top: "527" convolution_param { num_output: 17 bias_term: true group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "528" type: "Convolution" bottom: "512" top: "528" convolution_param { num_output: 256 bias_term: true group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "529" type: "ReLU" bottom: "528" top: "529" } layer { name: "kp_offset" type: "Convolution" bottom: "529" top: "kp_offset" convolution_param { num_output: 2 bias_term: true group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 dilation: 1 } } layer { name: "531" type: "Sigmoid" bottom: "515" top: "531" } layer { name: "nms_hm" type: "Pooling" bottom: "531" top: "nms_hm" pooling_param { pool: MAX kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 pad_h: 1 pad_w: 1 } } layer { name: "hm" type: "Pooling" bottom: "531" top: "hm" pooling_param { pool: MAX kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 pad_h: 0 pad_w: 0 } } layer { name: "534" type: "Sigmoid" bottom: "527" top: "534" } layer { name: "nms_hm_kp" type: "Pooling" bottom: "534" top: "nms_hm_kp" pooling_param { pool: MAX kernel_h: 3 kernel_w: 3 stride_h: 1 stride_w: 1 pad_h: 1 pad_w: 1 } } layer { name: "hm_kp" type: "Pooling" bottom: "534" top: "hm_kp" pooling_param { pool: MAX kernel_h: 1 kernel_w: 1 stride_h: 1 stride_w: 1 pad_h: 0 pad_w: 0 } }