name: "laya_ir" input: "data" input_dim: 1 input_dim: 1 input_dim: 114 input_dim: 114 layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 5 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1" type: "PReLU" bottom: "conv1" top: "conv1" } layer { name: "norm1" type: "BatchNorm" bottom: "conv1" top: "conv1" } ######################### layer { name: "conv1_1" type: "Convolution" bottom: "conv1" top: "conv1_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1_1" type: "PReLU" bottom: "conv1_1" top: "conv1_1" } layer { name: "norm1_1" type: "BatchNorm" bottom: "conv1_1" top: "conv1_1" } ######################### layer { name: "pool1" type: "Pooling" bottom: "conv1_1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1" top: "conv2_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_1" type: "PReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "norm2_1" type: "BatchNorm" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_2" type: "PReLU" bottom: "conv2_2" top: "conv2_2" } layer { name: "norm2_2" type: "BatchNorm" bottom: "conv2_2" top: "conv2_2" } ######################### layer { name: "conv2_2_1" type: "Convolution" bottom: "conv2_2" top: "conv2_2_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_2_1" type: "PReLU" bottom: "conv2_2_1" top: "conv2_2_1" } layer { name: "norm2_2_1" type: "BatchNorm" bottom: "conv2_2_1" top: "conv2_2_1" } ######################### layer { name: "pool2_2" type: "Pooling" bottom: "conv2_2_1" top: "pool2_2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv2_3" type: "Convolution" bottom: "pool2_2" top: "conv2_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_3" type: "PReLU" bottom: "conv2_3" top: "conv2_3" } layer { name: "norm2_3" type: "BatchNorm" bottom: "conv2_3" top: "conv2_3" } layer { name: "conv2_4" type: "Convolution" bottom: "conv2_3" top: "conv2_4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_4" type: "PReLU" bottom: "conv2_4" top: "conv2_4" } layer { name: "norm2_4" type: "BatchNorm" bottom: "conv2_4" top: "conv2_4" } layer { name: "conv2_5" type: "Convolution" bottom: "conv2_4" top: "conv2_5" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu2_5" type: "PReLU" bottom: "conv2_5" top: "conv2_5" } layer { name: "norm2_5" type: "BatchNorm" bottom: "conv2_5" top: "conv2_5" } layer { name: "pool2" type: "Pooling" bottom: "conv2_5" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_1" type: "PReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "norm3_1" type: "BatchNorm" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu3_2" type: "PReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "norm3_2" type: "BatchNorm" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv4_1" type: "Convolution" bottom: "conv3_2" top: "conv4_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_1" type: "PReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "norm4_1" type: "BatchNorm" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 192 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_2" type: "PReLU" bottom: "conv4_2" top: "conv4_2" } layer { name: "norm4_2" type: "BatchNorm" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_2_1" type: "Convolution" bottom: "conv4_2" top: "conv4_2_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 384 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_2_1" type: "PReLU" bottom: "conv4_2_1" top: "conv4_2_1" } layer { name: "norm4_2_1" type: "BatchNorm" bottom: "conv4_2_1" top: "conv4_2_1" } layer { name: "pool4_2" type: "Pooling" bottom: "conv4_2_1" top: "pool4_2" pooling_param { pool: AVE kernel_size: 3 stride: 2 } } layer { name: "conv4_3" type: "Convolution" bottom: "pool4_2" top: "conv4_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_3" type: "PReLU" bottom: "conv4_3" top: "conv4_3" } layer { name: "norm4_3" type: "BatchNorm" bottom: "conv4_3" top: "conv4_3" } layer { name: "conv4_4" type: "Convolution" bottom: "conv4_3" top: "conv4_4" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu4_4" type: "PReLU" bottom: "conv4_4" top: "conv4_4" } layer { name: "norm4_4" type: "BatchNorm" bottom: "conv4_4" top: "conv4_4" } layer { name: "conv5_1" type: "Convolution" bottom: "conv4_4" top: "conv5_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_1" type: "PReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "norm5_1" type: "BatchNorm" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_2" type: "Convolution" bottom: "conv5_1" top: "conv5_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 256 pad: 0 kernel_size: 2 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_2" type: "PReLU" bottom: "conv5_2" top: "conv5_2" } layer { name: "norm5_2" type: "BatchNorm" bottom: "conv5_2" top: "conv5_2" } layer { name: "conv5_3" type: "Convolution" bottom: "conv5_2" top: "conv5_3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 512 pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu5_3" type: "PReLU" bottom: "conv5_3" top: "conv5_3" } layer { name: "norm5_3" type: "BatchNorm" bottom: "conv5_3" top: "conv5_3" } layer { name: "pool5" type: "Pooling" bottom: "conv5_3" top: "pool5" pooling_param { pool: AVE kernel_size: 2 stride: 2 } } layer { name: "fc6" type: "InnerProduct" bottom: "pool5" top: "fc6" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } #propagate_down: false inner_product_param { num_output: 512 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu6" type: "PReLU" bottom: "fc6" top: "fc6" } layer { name: "norm6" type: "BatchNorm" bottom: "fc6" top: "fc6" } layer { name: "drop6" type: "Dropout" bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.0 #0.6 } } layer { name: "fc7" type: "InnerProduct" bottom: "fc6" top: "fc7" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 256 weight_filler { type: "msra" } bias_filler { type: "constant" value: 0 } } } layer { name: "norm7" type: "BatchNorm" bottom: "fc7" top: "fc7" }