name: "kitti_192x384" input: "blob1" input_dim: 1 input_dim: 4 input_dim: 192 input_dim: 384 layer { name: "conv1" type: "Convolution" bottom: "blob1" top: "conv_blob1" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 2 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm1" type: "BatchNorm" bottom: "conv_blob1" top: "batch_norm_blob1" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale1" type: "Scale" bottom: "batch_norm_blob1" top: "batch_norm_blob1" scale_param { bias_term: true } } layer { name: "relu1" type: "ReLU" bottom: "batch_norm_blob1" top: "relu_blob1" } layer { name: "max_pool1" type: "Pooling" bottom: "relu_blob1" top: "max_pool_blob1" pooling_param { pool: MAX kernel_size: 3 stride: 2 pad: 1 ceil_mode: false } } layer { name: "conv2" type: "Convolution" bottom: "max_pool_blob1" top: "conv_blob2" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm2" type: "BatchNorm" bottom: "conv_blob2" top: "batch_norm_blob2" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale2" type: "Scale" bottom: "batch_norm_blob2" top: "batch_norm_blob2" scale_param { bias_term: true } } layer { name: "relu2" type: "ReLU" bottom: "batch_norm_blob2" top: "relu_blob2" } layer { name: "conv3" type: "Convolution" bottom: "relu_blob2" top: "conv_blob3" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm3" type: "BatchNorm" bottom: "conv_blob3" top: "batch_norm_blob3" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale3" type: "Scale" bottom: "batch_norm_blob3" top: "batch_norm_blob3" scale_param { bias_term: true } } layer { name: "add1" type: "Eltwise" bottom: "batch_norm_blob3" bottom: "max_pool_blob1" top: "add_blob1" eltwise_param { operation: SUM } } layer { name: "relu3" type: "ReLU" bottom: "add_blob1" top: "relu_blob3" } layer { name: "conv4" type: "Convolution" bottom: "relu_blob3" top: "conv_blob4" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm4" type: "BatchNorm" bottom: "conv_blob4" top: "batch_norm_blob4" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale4" type: "Scale" bottom: "batch_norm_blob4" top: "batch_norm_blob4" scale_param { bias_term: true } } layer { name: "relu4" type: "ReLU" bottom: "batch_norm_blob4" top: "relu_blob4" } layer { name: "conv5" type: "Convolution" bottom: "relu_blob4" top: "conv_blob5" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm5" type: "BatchNorm" bottom: "conv_blob5" top: "batch_norm_blob5" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale5" type: "Scale" bottom: "batch_norm_blob5" top: "batch_norm_blob5" scale_param { bias_term: true } } layer { name: "add2" type: "Eltwise" bottom: "batch_norm_blob5" bottom: "relu_blob3" top: "add_blob2" eltwise_param { operation: SUM } } layer { name: "relu5" type: "ReLU" bottom: "add_blob2" top: "relu_blob5" } layer { name: "conv6" type: "Convolution" bottom: "relu_blob5" top: "conv_blob6" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm6" type: "BatchNorm" bottom: "conv_blob6" top: "batch_norm_blob6" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale6" type: "Scale" bottom: "batch_norm_blob6" top: "batch_norm_blob6" scale_param { bias_term: true } } layer { name: "relu6" type: "ReLU" bottom: "batch_norm_blob6" top: "relu_blob6" } layer { name: "conv7" type: "Convolution" bottom: "relu_blob6" top: "conv_blob7" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm7" type: "BatchNorm" bottom: "conv_blob7" top: "batch_norm_blob7" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale7" type: "Scale" bottom: "batch_norm_blob7" top: "batch_norm_blob7" scale_param { bias_term: true } } layer { name: "add3" type: "Eltwise" bottom: "batch_norm_blob7" bottom: "relu_blob5" top: "add_blob3" eltwise_param { operation: SUM } } layer { name: "relu7" type: "ReLU" bottom: "add_blob3" top: "relu_blob7" } layer { name: "conv8" type: "Convolution" bottom: "relu_blob7" top: "conv_blob8" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm8" type: "BatchNorm" bottom: "conv_blob8" top: "batch_norm_blob8" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale8" type: "Scale" bottom: "batch_norm_blob8" top: "batch_norm_blob8" scale_param { bias_term: true } } layer { name: "relu8" type: "ReLU" bottom: "batch_norm_blob8" top: "relu_blob8" } layer { name: "conv9" type: "Convolution" bottom: "relu_blob8" top: "conv_blob9" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm9" type: "BatchNorm" bottom: "conv_blob9" top: "batch_norm_blob9" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale9" type: "Scale" bottom: "batch_norm_blob9" top: "batch_norm_blob9" scale_param { bias_term: true } } layer { name: "add4" type: "Eltwise" bottom: "batch_norm_blob9" bottom: "relu_blob7" top: "add_blob4" eltwise_param { operation: SUM } } layer { name: "relu9" type: "ReLU" bottom: "add_blob4" top: "relu_blob9" } layer { name: "conv10" type: "Convolution" bottom: "relu_blob9" top: "conv_blob10" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm10" type: "BatchNorm" bottom: "conv_blob10" top: "batch_norm_blob10" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale10" type: "Scale" bottom: "batch_norm_blob10" top: "batch_norm_blob10" scale_param { bias_term: true } } layer { name: "relu10" type: "ReLU" bottom: "batch_norm_blob10" top: "relu_blob10" } layer { name: "conv11" type: "Convolution" bottom: "relu_blob10" top: "conv_blob11" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm11" type: "BatchNorm" bottom: "conv_blob11" top: "batch_norm_blob11" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale11" type: "Scale" bottom: "batch_norm_blob11" top: "batch_norm_blob11" scale_param { bias_term: true } } layer { name: "add5" type: "Eltwise" bottom: "batch_norm_blob11" bottom: "relu_blob9" top: "add_blob5" eltwise_param { operation: SUM } } layer { name: "relu11" type: "ReLU" bottom: "add_blob5" top: "relu_blob11" } layer { name: "conv12" type: "Convolution" bottom: "relu_blob11" top: "conv_blob12" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm12" type: "BatchNorm" bottom: "conv_blob12" top: "batch_norm_blob12" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale12" type: "Scale" bottom: "batch_norm_blob12" top: "batch_norm_blob12" scale_param { bias_term: true } } layer { name: "relu12" type: "ReLU" bottom: "batch_norm_blob12" top: "relu_blob12" } layer { name: "conv13" type: "Convolution" bottom: "relu_blob12" top: "conv_blob13" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm13" type: "BatchNorm" bottom: "conv_blob13" top: "batch_norm_blob13" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale13" type: "Scale" bottom: "batch_norm_blob13" top: "batch_norm_blob13" scale_param { bias_term: true } } layer { name: "add6" type: "Eltwise" bottom: "batch_norm_blob13" bottom: "relu_blob11" top: "add_blob6" eltwise_param { operation: SUM } } layer { name: "relu13" type: "ReLU" bottom: "add_blob6" top: "relu_blob13" } layer { name: "conv14" type: "Convolution" bottom: "relu_blob13" top: "conv_blob14" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm14" type: "BatchNorm" bottom: "conv_blob14" top: "batch_norm_blob14" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale14" type: "Scale" bottom: "batch_norm_blob14" top: "batch_norm_blob14" scale_param { bias_term: true } } layer { name: "relu14" type: "ReLU" bottom: "batch_norm_blob14" top: "relu_blob14" } layer { name: "conv15" type: "Convolution" bottom: "relu_blob14" top: "conv_blob15" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm15" type: "BatchNorm" bottom: "conv_blob15" top: "batch_norm_blob15" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale15" type: "Scale" bottom: "batch_norm_blob15" top: "batch_norm_blob15" scale_param { bias_term: true } } layer { name: "add7" type: "Eltwise" bottom: "batch_norm_blob15" bottom: "relu_blob13" top: "add_blob7" eltwise_param { operation: SUM } } layer { name: "relu15" type: "ReLU" bottom: "add_blob7" top: "relu_blob15" } layer { name: "conv16" type: "Convolution" bottom: "relu_blob15" top: "conv_blob16" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 2 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm16" type: "BatchNorm" bottom: "conv_blob16" top: "batch_norm_blob16" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale16" type: "Scale" bottom: "batch_norm_blob16" top: "batch_norm_blob16" scale_param { bias_term: true } } layer { name: "relu16" type: "ReLU" bottom: "batch_norm_blob16" top: "relu_blob16" } layer { name: "conv17" type: "Convolution" bottom: "relu_blob16" top: "conv_blob17" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm17" type: "BatchNorm" bottom: "conv_blob17" top: "batch_norm_blob17" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale17" type: "Scale" bottom: "batch_norm_blob17" top: "batch_norm_blob17" scale_param { bias_term: true } } layer { name: "conv18" type: "Convolution" bottom: "relu_blob15" top: "conv_blob18" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 group: 1 stride: 2 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm18" type: "BatchNorm" bottom: "conv_blob18" top: "batch_norm_blob18" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale18" type: "Scale" bottom: "batch_norm_blob18" top: "batch_norm_blob18" scale_param { bias_term: true } } layer { name: "add8" type: "Eltwise" bottom: "batch_norm_blob17" bottom: "batch_norm_blob18" top: "add_blob8" eltwise_param { operation: SUM } } layer { name: "relu17" type: "ReLU" bottom: "add_blob8" top: "relu_blob17" } layer { name: "conv19" type: "Convolution" bottom: "relu_blob17" top: "conv_blob19" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm19" type: "BatchNorm" bottom: "conv_blob19" top: "batch_norm_blob19" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale19" type: "Scale" bottom: "batch_norm_blob19" top: "batch_norm_blob19" scale_param { bias_term: true } } layer { name: "relu18" type: "ReLU" bottom: "batch_norm_blob19" top: "relu_blob18" } layer { name: "conv20" type: "Convolution" bottom: "relu_blob18" top: "conv_blob20" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm20" type: "BatchNorm" bottom: "conv_blob20" top: "batch_norm_blob20" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale20" type: "Scale" bottom: "batch_norm_blob20" top: "batch_norm_blob20" scale_param { bias_term: true } } layer { name: "add9" type: "Eltwise" bottom: "batch_norm_blob20" bottom: "relu_blob17" top: "add_blob9" eltwise_param { operation: SUM } } layer { name: "relu19" type: "ReLU" bottom: "add_blob9" top: "relu_blob19" } layer { name: "conv21" type: "Convolution" bottom: "relu_blob19" top: "conv_blob21" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm21" type: "BatchNorm" bottom: "conv_blob21" top: "batch_norm_blob21" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale21" type: "Scale" bottom: "batch_norm_blob21" top: "batch_norm_blob21" scale_param { bias_term: true } } layer { name: "relu20" type: "ReLU" bottom: "batch_norm_blob21" top: "relu_blob20" } layer { name: "conv22" type: "Convolution" bottom: "relu_blob20" top: "conv_blob22" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm22" type: "BatchNorm" bottom: "conv_blob22" top: "batch_norm_blob22" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale22" type: "Scale" bottom: "batch_norm_blob22" top: "batch_norm_blob22" scale_param { bias_term: true } } layer { name: "add10" type: "Eltwise" bottom: "batch_norm_blob22" bottom: "relu_blob19" top: "add_blob10" eltwise_param { operation: SUM } } layer { name: "relu21" type: "ReLU" bottom: "add_blob10" top: "relu_blob21" } layer { name: "conv23" type: "Convolution" bottom: "relu_blob21" top: "conv_blob23" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm23" type: "BatchNorm" bottom: "conv_blob23" top: "batch_norm_blob23" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale23" type: "Scale" bottom: "batch_norm_blob23" top: "batch_norm_blob23" scale_param { bias_term: true } } layer { name: "relu22" type: "ReLU" bottom: "batch_norm_blob23" top: "relu_blob22" } layer { name: "conv24" type: "Convolution" bottom: "relu_blob22" top: "conv_blob24" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm24" type: "BatchNorm" bottom: "conv_blob24" top: "batch_norm_blob24" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale24" type: "Scale" bottom: "batch_norm_blob24" top: "batch_norm_blob24" scale_param { bias_term: true } } layer { name: "add11" type: "Eltwise" bottom: "batch_norm_blob24" bottom: "relu_blob21" top: "add_blob11" eltwise_param { operation: SUM } } layer { name: "relu23" type: "ReLU" bottom: "add_blob11" top: "relu_blob23" } layer { name: "conv25" type: "Convolution" bottom: "relu_blob23" top: "conv_blob25" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm25" type: "BatchNorm" bottom: "conv_blob25" top: "batch_norm_blob25" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale25" type: "Scale" bottom: "batch_norm_blob25" top: "batch_norm_blob25" scale_param { bias_term: true } } layer { name: "relu24" type: "ReLU" bottom: "batch_norm_blob25" top: "relu_blob24" } layer { name: "conv26" type: "Convolution" bottom: "relu_blob24" top: "conv_blob26" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm26" type: "BatchNorm" bottom: "conv_blob26" top: "batch_norm_blob26" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale26" type: "Scale" bottom: "batch_norm_blob26" top: "batch_norm_blob26" scale_param { bias_term: true } } layer { name: "add12" type: "Eltwise" bottom: "batch_norm_blob26" bottom: "relu_blob23" top: "add_blob12" eltwise_param { operation: SUM } } layer { name: "relu25" type: "ReLU" bottom: "add_blob12" top: "relu_blob25" } layer { name: "conv27" type: "Convolution" bottom: "relu_blob25" top: "conv_blob27" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 2 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm27" type: "BatchNorm" bottom: "conv_blob27" top: "batch_norm_blob27" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale27" type: "Scale" bottom: "batch_norm_blob27" top: "batch_norm_blob27" scale_param { bias_term: true } } layer { name: "relu26" type: "ReLU" bottom: "batch_norm_blob27" top: "relu_blob26" } layer { name: "conv28" type: "Convolution" bottom: "relu_blob26" top: "conv_blob28" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm28" type: "BatchNorm" bottom: "conv_blob28" top: "batch_norm_blob28" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale28" type: "Scale" bottom: "batch_norm_blob28" top: "batch_norm_blob28" scale_param { bias_term: true } } layer { name: "conv29" type: "Convolution" bottom: "relu_blob25" top: "conv_blob29" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 group: 1 stride: 2 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm29" type: "BatchNorm" bottom: "conv_blob29" top: "batch_norm_blob29" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale29" type: "Scale" bottom: "batch_norm_blob29" top: "batch_norm_blob29" scale_param { bias_term: true } } layer { name: "add13" type: "Eltwise" bottom: "batch_norm_blob28" bottom: "batch_norm_blob29" top: "add_blob13" eltwise_param { operation: SUM } } layer { name: "relu27" type: "ReLU" bottom: "add_blob13" top: "relu_blob27" } layer { name: "conv30" type: "Convolution" bottom: "relu_blob27" top: "conv_blob30" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm30" type: "BatchNorm" bottom: "conv_blob30" top: "batch_norm_blob30" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale30" type: "Scale" bottom: "batch_norm_blob30" top: "batch_norm_blob30" scale_param { bias_term: true } } layer { name: "relu28" type: "ReLU" bottom: "batch_norm_blob30" top: "relu_blob28" } layer { name: "conv31" type: "Convolution" bottom: "relu_blob28" top: "conv_blob31" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm31" type: "BatchNorm" bottom: "conv_blob31" top: "batch_norm_blob31" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale31" type: "Scale" bottom: "batch_norm_blob31" top: "batch_norm_blob31" scale_param { bias_term: true } } layer { name: "add14" type: "Eltwise" bottom: "batch_norm_blob31" bottom: "relu_blob27" top: "add_blob14" eltwise_param { operation: SUM } } layer { name: "relu29" type: "ReLU" bottom: "add_blob14" top: "relu_blob29" } layer { name: "conv32" type: "Convolution" bottom: "relu_blob29" top: "conv_blob32" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm32" type: "BatchNorm" bottom: "conv_blob32" top: "batch_norm_blob32" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale32" type: "Scale" bottom: "batch_norm_blob32" top: "batch_norm_blob32" scale_param { bias_term: true } } layer { name: "relu30" type: "ReLU" bottom: "batch_norm_blob32" top: "relu_blob30" } layer { name: "conv33" type: "Convolution" bottom: "relu_blob30" top: "conv_blob33" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm33" type: "BatchNorm" bottom: "conv_blob33" top: "batch_norm_blob33" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale33" type: "Scale" bottom: "batch_norm_blob33" top: "batch_norm_blob33" scale_param { bias_term: true } } layer { name: "add15" type: "Eltwise" bottom: "batch_norm_blob33" bottom: "relu_blob29" top: "add_blob15" eltwise_param { operation: SUM } } layer { name: "relu31" type: "ReLU" bottom: "add_blob15" top: "relu_blob31" } layer { name: "conv34" type: "Convolution" bottom: "relu_blob31" top: "conv_blob34" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm34" type: "BatchNorm" bottom: "conv_blob34" top: "batch_norm_blob34" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale34" type: "Scale" bottom: "batch_norm_blob34" top: "batch_norm_blob34" scale_param { bias_term: true } } layer { name: "relu32" type: "ReLU" bottom: "batch_norm_blob34" top: "relu_blob32" } layer { name: "conv35" type: "Convolution" bottom: "relu_blob32" top: "conv_blob35" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm35" type: "BatchNorm" bottom: "conv_blob35" top: "batch_norm_blob35" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale35" type: "Scale" bottom: "batch_norm_blob35" top: "batch_norm_blob35" scale_param { bias_term: true } } layer { name: "add16" type: "Eltwise" bottom: "batch_norm_blob35" bottom: "relu_blob31" top: "add_blob16" eltwise_param { operation: SUM } } layer { name: "relu33" type: "ReLU" bottom: "add_blob16" top: "relu_blob33" } layer { name: "conv36" type: "Convolution" bottom: "relu_blob33" top: "conv_blob36" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm36" type: "BatchNorm" bottom: "conv_blob36" top: "batch_norm_blob36" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale36" type: "Scale" bottom: "batch_norm_blob36" top: "batch_norm_blob36" scale_param { bias_term: true } } layer { name: "relu34" type: "ReLU" bottom: "batch_norm_blob36" top: "relu_blob34" } layer { name: "conv37" type: "Convolution" bottom: "relu_blob34" top: "conv_blob37" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm37" type: "BatchNorm" bottom: "conv_blob37" top: "batch_norm_blob37" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale37" type: "Scale" bottom: "batch_norm_blob37" top: "batch_norm_blob37" scale_param { bias_term: true } } layer { name: "add17" type: "Eltwise" bottom: "batch_norm_blob37" bottom: "relu_blob33" top: "add_blob17" eltwise_param { operation: SUM } } layer { name: "relu35" type: "ReLU" bottom: "add_blob17" top: "relu_blob35" } layer { name: "conv38" type: "Convolution" bottom: "relu_blob35" top: "conv_blob38" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 2 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm38" type: "BatchNorm" bottom: "conv_blob38" top: "batch_norm_blob38" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale38" type: "Scale" bottom: "batch_norm_blob38" top: "batch_norm_blob38" scale_param { bias_term: true } } layer { name: "relu36" type: "ReLU" bottom: "batch_norm_blob38" top: "relu_blob36" } layer { name: "conv39" type: "Convolution" bottom: "relu_blob36" top: "conv_blob39" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm39" type: "BatchNorm" bottom: "conv_blob39" top: "batch_norm_blob39" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale39" type: "Scale" bottom: "batch_norm_blob39" top: "batch_norm_blob39" scale_param { bias_term: true } } layer { name: "conv40" type: "Convolution" bottom: "relu_blob35" top: "conv_blob40" convolution_param { num_output: 128 bias_term: false pad: 0 kernel_size: 1 group: 1 stride: 2 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm40" type: "BatchNorm" bottom: "conv_blob40" top: "batch_norm_blob40" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale40" type: "Scale" bottom: "batch_norm_blob40" top: "batch_norm_blob40" scale_param { bias_term: true } } layer { name: "add18" type: "Eltwise" bottom: "batch_norm_blob39" bottom: "batch_norm_blob40" top: "add_blob18" eltwise_param { operation: SUM } } layer { name: "relu37" type: "ReLU" bottom: "add_blob18" top: "relu_blob37" } layer { name: "conv41" type: "Convolution" bottom: "relu_blob37" top: "conv_blob41" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm41" type: "BatchNorm" bottom: "conv_blob41" top: "batch_norm_blob41" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale41" type: "Scale" bottom: "batch_norm_blob41" top: "batch_norm_blob41" scale_param { bias_term: true } } layer { name: "relu38" type: "ReLU" bottom: "batch_norm_blob41" top: "relu_blob38" } layer { name: "conv42" type: "Convolution" bottom: "relu_blob38" top: "conv_blob42" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm42" type: "BatchNorm" bottom: "conv_blob42" top: "batch_norm_blob42" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale42" type: "Scale" bottom: "batch_norm_blob42" top: "batch_norm_blob42" scale_param { bias_term: true } } layer { name: "add19" type: "Eltwise" bottom: "batch_norm_blob42" bottom: "relu_blob37" top: "add_blob19" eltwise_param { operation: SUM } } layer { name: "relu39" type: "ReLU" bottom: "add_blob19" top: "relu_blob39" } layer { name: "conv43" type: "Convolution" bottom: "relu_blob39" top: "conv_blob43" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm43" type: "BatchNorm" bottom: "conv_blob43" top: "batch_norm_blob43" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale43" type: "Scale" bottom: "batch_norm_blob43" top: "batch_norm_blob43" scale_param { bias_term: true } } layer { name: "relu40" type: "ReLU" bottom: "batch_norm_blob43" top: "relu_blob40" } layer { name: "conv44" type: "Convolution" bottom: "relu_blob40" top: "conv_blob44" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm44" type: "BatchNorm" bottom: "conv_blob44" top: "batch_norm_blob44" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale44" type: "Scale" bottom: "batch_norm_blob44" top: "batch_norm_blob44" scale_param { bias_term: true } } layer { name: "add20" type: "Eltwise" bottom: "batch_norm_blob44" bottom: "relu_blob39" top: "add_blob20" eltwise_param { operation: SUM } } layer { name: "relu41" type: "ReLU" bottom: "add_blob20" top: "relu_blob41" } layer { name: "conv45" type: "Convolution" bottom: "relu_blob41" top: "conv_blob45" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm45" type: "BatchNorm" bottom: "conv_blob45" top: "batch_norm_blob45" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale45" type: "Scale" bottom: "batch_norm_blob45" top: "batch_norm_blob45" scale_param { bias_term: true } } layer { name: "relu42" type: "ReLU" bottom: "batch_norm_blob45" top: "relu_blob42" } layer { name: "conv46" type: "Convolution" bottom: "relu_blob42" top: "conv_blob46" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } dilation: 1 } } layer { name: "batch_norm46" type: "BatchNorm" bottom: "conv_blob46" top: "batch_norm_blob46" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale46" type: "Scale" bottom: "batch_norm_blob46" top: "batch_norm_blob46" scale_param { bias_term: true } } layer { name: "add21" type: "Eltwise" bottom: "batch_norm_blob46" bottom: "relu_blob41" top: "add_blob21" eltwise_param { operation: SUM } } layer { name: "relu43" type: "ReLU" bottom: "add_blob21" top: "relu_blob43" } layer { name: "conv47" type: "Convolution" bottom: "relu_blob43" top: "conv_blob47" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "relu44" type: "ReLU" bottom: "conv_blob47" top: "relu_blob44" } layer { name: "conv48" type: "Convolution" bottom: "relu_blob44" top: "conv_blob48" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "batch_norm47" type: "BatchNorm" bottom: "conv_blob48" top: "batch_norm_blob47" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale47" type: "Scale" bottom: "batch_norm_blob47" top: "batch_norm_blob47" scale_param { bias_term: true } } layer { name: "relu45" type: "ReLU" bottom: "batch_norm_blob47" top: "relu_blob45" } layer { name: "conv49" type: "Convolution" bottom: "relu_blob45" top: "conv_blob49" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "add22" type: "Eltwise" bottom: "relu_blob44" bottom: "conv_blob49" top: "add_blob22" eltwise_param { operation: SUM } } layer { name: "relu46" type: "ReLU" bottom: "add_blob22" top: "relu_blob46" } layer { name: "conv50" type: "Convolution" bottom: "relu_blob46" top: "conv_blob50" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "conv_transpose1" type: "Deconvolution" bottom: "conv_blob50" top: "conv_transpose_blob1" convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 2 group: 1 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "conv51" type: "Convolution" bottom: "relu_blob35" top: "conv_blob51" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "relu47" type: "ReLU" bottom: "conv_blob51" top: "relu_blob47" } layer { name: "conv52" type: "Convolution" bottom: "relu_blob47" top: "conv_blob52" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "batch_norm48" type: "BatchNorm" bottom: "conv_blob52" top: "batch_norm_blob48" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale48" type: "Scale" bottom: "batch_norm_blob48" top: "batch_norm_blob48" scale_param { bias_term: true } } layer { name: "relu48" type: "ReLU" bottom: "batch_norm_blob48" top: "relu_blob48" } layer { name: "conv53" type: "Convolution" bottom: "relu_blob48" top: "conv_blob53" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "add23" type: "Eltwise" bottom: "relu_blob47" bottom: "conv_blob53" top: "add_blob23" eltwise_param { operation: SUM } } layer { name: "relu49" type: "ReLU" bottom: "add_blob23" top: "relu_blob49" } layer { name: "add24" type: "Eltwise" bottom: "relu_blob49" bottom: "conv_transpose_blob1" top: "add_blob24" eltwise_param { operation: SUM } } layer { name: "conv54" type: "Convolution" bottom: "add_blob24" top: "conv_blob54" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "relu50" type: "ReLU" bottom: "conv_blob54" top: "relu_blob50" } layer { name: "conv55" type: "Convolution" bottom: "relu_blob50" top: "conv_blob55" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "batch_norm49" type: "BatchNorm" bottom: "conv_blob55" top: "batch_norm_blob49" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale49" type: "Scale" bottom: "batch_norm_blob49" top: "batch_norm_blob49" scale_param { bias_term: true } } layer { name: "relu51" type: "ReLU" bottom: "batch_norm_blob49" top: "relu_blob51" } layer { name: "conv56" type: "Convolution" bottom: "relu_blob51" top: "conv_blob56" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "add25" type: "Eltwise" bottom: "relu_blob50" bottom: "conv_blob56" top: "add_blob25" eltwise_param { operation: SUM } } layer { name: "relu52" type: "ReLU" bottom: "add_blob25" top: "relu_blob52" } layer { name: "conv_transpose2" type: "Deconvolution" bottom: "relu_blob52" top: "conv_transpose_blob2" convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 2 group: 1 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "conv57" type: "Convolution" bottom: "relu_blob25" top: "conv_blob57" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "relu53" type: "ReLU" bottom: "conv_blob57" top: "relu_blob53" } layer { name: "conv58" type: "Convolution" bottom: "relu_blob53" top: "conv_blob58" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "batch_norm50" type: "BatchNorm" bottom: "conv_blob58" top: "batch_norm_blob50" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale50" type: "Scale" bottom: "batch_norm_blob50" top: "batch_norm_blob50" scale_param { bias_term: true } } layer { name: "relu54" type: "ReLU" bottom: "batch_norm_blob50" top: "relu_blob54" } layer { name: "conv59" type: "Convolution" bottom: "relu_blob54" top: "conv_blob59" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "add26" type: "Eltwise" bottom: "relu_blob53" bottom: "conv_blob59" top: "add_blob26" eltwise_param { operation: SUM } } layer { name: "relu55" type: "ReLU" bottom: "add_blob26" top: "relu_blob55" } layer { name: "add27" type: "Eltwise" bottom: "relu_blob55" bottom: "conv_transpose_blob2" top: "add_blob27" eltwise_param { operation: SUM } } layer { name: "conv60" type: "Convolution" bottom: "add_blob27" top: "conv_blob60" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "relu56" type: "ReLU" bottom: "conv_blob60" top: "relu_blob56" } layer { name: "conv61" type: "Convolution" bottom: "relu_blob56" top: "conv_blob61" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "batch_norm51" type: "BatchNorm" bottom: "conv_blob61" top: "batch_norm_blob51" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale51" type: "Scale" bottom: "batch_norm_blob51" top: "batch_norm_blob51" scale_param { bias_term: true } } layer { name: "relu57" type: "ReLU" bottom: "batch_norm_blob51" top: "relu_blob57" } layer { name: "conv62" type: "Convolution" bottom: "relu_blob57" top: "conv_blob62" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "add28" type: "Eltwise" bottom: "relu_blob56" bottom: "conv_blob62" top: "add_blob28" eltwise_param { operation: SUM } } layer { name: "relu58" type: "ReLU" bottom: "add_blob28" top: "relu_blob58" } layer { name: "conv_transpose3" type: "Deconvolution" bottom: "relu_blob58" top: "conv_transpose_blob3" convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 2 group: 1 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "conv63" type: "Convolution" bottom: "relu_blob15" top: "conv_blob63" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "relu59" type: "ReLU" bottom: "conv_blob63" top: "relu_blob59" } layer { name: "conv64" type: "Convolution" bottom: "relu_blob59" top: "conv_blob64" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "batch_norm52" type: "BatchNorm" bottom: "conv_blob64" top: "batch_norm_blob52" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale52" type: "Scale" bottom: "batch_norm_blob52" top: "batch_norm_blob52" scale_param { bias_term: true } } layer { name: "relu60" type: "ReLU" bottom: "batch_norm_blob52" top: "relu_blob60" } layer { name: "conv65" type: "Convolution" bottom: "relu_blob60" top: "conv_blob65" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "add29" type: "Eltwise" bottom: "relu_blob59" bottom: "conv_blob65" top: "add_blob29" eltwise_param { operation: SUM } } layer { name: "relu61" type: "ReLU" bottom: "add_blob29" top: "relu_blob61" } layer { name: "add30" type: "Eltwise" bottom: "relu_blob61" bottom: "conv_transpose_blob3" top: "add_blob30" eltwise_param { operation: SUM } } layer { name: "conv66" type: "Convolution" bottom: "add_blob30" top: "conv_blob66" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "relu62" type: "ReLU" bottom: "conv_blob66" top: "relu_blob62" } layer { name: "conv67" type: "Convolution" bottom: "relu_blob62" top: "conv_blob67" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "batch_norm53" type: "BatchNorm" bottom: "conv_blob67" top: "batch_norm_blob53" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale53" type: "Scale" bottom: "batch_norm_blob53" top: "batch_norm_blob53" scale_param { bias_term: true } } layer { name: "relu63" type: "ReLU" bottom: "batch_norm_blob53" top: "relu_blob63" } layer { name: "conv68" type: "Convolution" bottom: "relu_blob63" top: "conv_blob68" convolution_param { num_output: 64 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "add31" type: "Eltwise" bottom: "relu_blob62" bottom: "conv_blob68" top: "add_blob31" eltwise_param { operation: SUM } } layer { name: "relu64" type: "ReLU" bottom: "add_blob31" top: "relu_blob64" } layer { name: "conv_transpose4" type: "Deconvolution" bottom: "relu_blob64" top: "conv_transpose_blob4" convolution_param { num_output: 64 bias_term: true pad: 0 kernel_size: 2 group: 1 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "conv69" type: "Convolution" bottom: "conv_transpose_blob4" top: "conv_blob69" convolution_param { num_output: 32 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } } layer { name: "batch_norm54" type: "BatchNorm" bottom: "conv_blob69" top: "batch_norm_blob54" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "bn_scale54" type: "Scale" bottom: "batch_norm_blob54" top: "batch_norm_blob54" scale_param { bias_term: true } } layer { name: "relu65" type: "ReLU" bottom: "batch_norm_blob54" top: "relu_blob65" } layer { name: "conv70" type: "Convolution" bottom: "relu_blob65" top: "conv_blob70" convolution_param { num_output: 1 bias_term: true pad: 1 kernel_size: 3 group: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } dilation: 1 } }