input: "image" input_dim: 1 input_dim: 3 input_dim: 320 input_dim: 320 ##############################################all the same############################################### layer { bottom: "image" top: "conv1" name: "conv1" type: "Convolution" convolution_param { num_output: 32 kernel_size: 7 pad: 3 stride: 2 weight_filler { type: "msra" } bias_term: false } } #layer { # bottom: "conv1" # top: "conv1" # name: "bn_conv1" # type: "BatchNorm" # batch_norm_param { # moving_average_fraction: 0.9 # } #} # #layer { # bottom: "conv1" # top: "conv1" # name: "scale_conv1" # type: "Scale" # scale_param { # bias_term: true # } #} layer { bottom: "conv1" top: "conv1" name: "conv1_relu" type: "ReLU" } #################replace the pooling layer with conv layer####### #layer { # bottom: "conv1" # top: "pool1" # name: "pool1" # type: "Pooling" # pooling_param { # kernel_size: 3 # stride: 2 # pool: MAX # } #} ####################3 layer { name: "res1a_branch1_1x1" type: "Convolution" bottom: "conv1" top: "res1a_branch1_1x1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } #################### layer { bottom: "res1a_branch1_1x1" top: "res1a_branch1" name: "res1a_branch1" type: "Convolution" convolution_param { num_output: 32 kernel_size: 1 pad: 0 stride: 2 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res1a_branch1" top: "res1a_branch1" name: "bn1a_branch1" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res1a_branch1" top: "res1a_branch1" name: "scale1a_branch1" type: "Scale" scale_param { bias_term: true } } ###############1x1############### layer { name: "res1a_branch2_1x1" type: "Convolution" bottom: "conv1" top: "res1a_branch2_1x1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } ############################### layer { bottom: "res1a_branch2_1x1" top: "res1a_branch2a" name: "res1a_branch2a" type: "Convolution" convolution_param { num_output: 32 kernel_size: 3 pad: 1 stride: 2 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res1a_branch2a" top: "res1a_branch2a" name: "bn1a_branch2a" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res1a_branch2a" top: "res1a_branch2a" name: "scale1a_branch2a" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res1a_branch2a" top: "res1a_branch2a" name: "res1a_branch2a_relu" type: "ReLU" } layer { bottom: "res1a_branch2a" top: "res1a_branch2b" name: "res1a_branch2b" type: "Convolution" convolution_param { num_output: 32 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res1a_branch2b" top: "res1a_branch2b" name: "bn1a_branch2b" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res1a_branch2b" top: "res1a_branch2b" name: "scale1a_branch2b" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res1a_branch1" bottom: "res1a_branch2b" top: "res1a" name: "res1a" type: "Eltwise" eltwise_param { operation: SUM } } layer { bottom: "res1a" top: "res1a" name: "res1a_relu" type: "ReLU" } ################end####################### ###############1x1############### layer { name: "res2a_branch1_1x1" type: "Convolution" bottom: "res1a" top: "res2a_branch1_1x1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } ############################### layer { bottom: "res2a_branch1_1x1" top: "res2a_branch1" name: "res2a_branch1" type: "Convolution" convolution_param { num_output: 32 kernel_size: 1 pad: 0 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res2a_branch1" top: "res2a_branch1" name: "bn2a_branch1" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res2a_branch1" top: "res2a_branch1" name: "scale2a_branch1" type: "Scale" scale_param { bias_term: true } } ###############1x1############### layer { name: "res2a_branch2_1x1" type: "Convolution" bottom: "res1a" top: "res2a_branch2_1x1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } ############################### layer { bottom: "res2a_branch2_1x1" top: "res2a_branch2a" name: "res2a_branch2a" type: "Convolution" convolution_param { num_output: 32 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res2a_branch2a" top: "res2a_branch2a" name: "bn2a_branch2a" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res2a_branch2a" top: "res2a_branch2a" name: "scale2a_branch2a" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res2a_branch2a" top: "res2a_branch2a" name: "res2a_branch2a_relu" type: "ReLU" } layer { bottom: "res2a_branch2a" top: "res2a_branch2b" name: "res2a_branch2b" type: "Convolution" convolution_param { num_output: 32 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res2a_branch2b" top: "res2a_branch2b" name: "bn2a_branch2b" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res2a_branch2b" top: "res2a_branch2b" name: "scale2a_branch2b" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res2a_branch1" bottom: "res2a_branch2b" top: "res2a" name: "res2a" type: "Eltwise" eltwise_param { operation: SUM } } layer { bottom: "res2a" top: "res2a" name: "res2a_relu" type: "ReLU" } ###############1x1############### layer { name: "res2b_branch2a_1x1" type: "Convolution" bottom: "res2a" top: "res2b_branch2a_1x1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } ############################### layer { bottom: "res2b_branch2a_1x1" top: "res2b_branch2a" name: "res2b_branch2a" type: "Convolution" convolution_param { num_output: 32 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res2b_branch2a" top: "res2b_branch2a" name: "bn2b_branch2a" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res2b_branch2a" top: "res2b_branch2a" name: "scale2b_branch2a" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res2b_branch2a" top: "res2b_branch2a" name: "res2b_branch2a_relu" type: "ReLU" } layer { bottom: "res2b_branch2a" top: "res2b_branch2b" name: "res2b_branch2b" type: "Convolution" convolution_param { num_output: 32 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res2b_branch2b" top: "res2b_branch2b" name: "bn2b_branch2b" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res2b_branch2b" top: "res2b_branch2b" name: "scale2b_branch2b" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res2a" bottom: "res2b_branch2b" top: "res2b" name: "res2b" type: "Eltwise" eltwise_param { operation: SUM } } layer { bottom: "res2b" top: "res2b" name: "res2b_relu" type: "ReLU" } ###############1x1############### layer { name: "res3a_branch1_1x1" type: "Convolution" bottom: "res2b" top: "res3a_branch1_1x1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } ############################### layer { bottom: "res3a_branch1_1x1" top: "res3a_branch1" name: "res3a_branch1" type: "Convolution" convolution_param { num_output: 64 kernel_size: 1 pad: 0 stride: 2 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res3a_branch1" top: "res3a_branch1" name: "bn3a_branch1" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res3a_branch1" top: "res3a_branch1" name: "scale3a_branch1" type: "Scale" scale_param { bias_term: true } } ###############1x1############### layer { name: "res3a_branch2a_1x1" type: "Convolution" bottom: "res2b" top: "res3a_branch2a_1x1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } ############################### layer { bottom: "res3a_branch2a_1x1" top: "res3a_branch2a" name: "res3a_branch2a" type: "Convolution" convolution_param { num_output: 64 kernel_size: 3 pad: 1 stride: 2 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res3a_branch2a" top: "res3a_branch2a" name: "bn3a_branch2a" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res3a_branch2a" top: "res3a_branch2a" name: "scale3a_branch2a" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res3a_branch2a" top: "res3a_branch2a" name: "res3a_branch2a_relu" type: "ReLU" } layer { bottom: "res3a_branch2a" top: "res3a_branch2b" name: "res3a_branch2b" type: "Convolution" convolution_param { num_output: 64 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res3a_branch2b" top: "res3a_branch2b" name: "bn3a_branch2b" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res3a_branch2b" top: "res3a_branch2b" name: "scale3a_branch2b" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res3a_branch1" bottom: "res3a_branch2b" top: "res3a" name: "res3a" type: "Eltwise" eltwise_param { operation: SUM } } layer { bottom: "res3a" top: "res3a" name: "res3a_relu" type: "ReLU" } ###############1x1############### layer { name: "res3b_branch2a_1x1" type: "Convolution" bottom: "res3a" top: "res3b_branch2a_1x1" param { lr_mult: 1.0 decay_mult: 1.0 } convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } } } ############################### layer { bottom: "res3b_branch2a_1x1" top: "res3b_branch2a" name: "res3b_branch2a" type: "Convolution" convolution_param { num_output: 64 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res3b_branch2a" top: "res3b_branch2a" name: "bn3b_branch2a" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res3b_branch2a" top: "res3b_branch2a" name: "scale3b_branch2a" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res3b_branch2a" top: "res3b_branch2a" name: "res3b_branch2a_relu" type: "ReLU" } layer { bottom: "res3b_branch2a" top: "res3b_branch2b" name: "res3b_branch2b" type: "Convolution" convolution_param { num_output: 64 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "msra" } bias_term: false } } layer { bottom: "res3b_branch2b" top: "res3b_branch2b" name: "bn3b_branch2b" type: "BatchNorm" batch_norm_param { moving_average_fraction: 0.9 } } layer { bottom: "res3b_branch2b" top: "res3b_branch2b" name: "scale3b_branch2b" type: "Scale" scale_param { bias_term: true } } layer { bottom: "res3a" bottom: "res3b_branch2b" top: "res3b" name: "res3b" type: "Eltwise" eltwise_param { operation: SUM } } layer { bottom: "res3b" top: "res3b" name: "res3b_relu" type: "ReLU" } ######################################################all the same############################################### layer { name: "conv4_3_CPM" type: "Convolution" bottom: "res3b" top: "conv4_3_CPM" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 256 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu4_3_CPM" type: "ReLU" bottom: "conv4_3_CPM" top: "conv4_3_CPM" } layer { name: "conv4_4_CPM" type: "Convolution" bottom: "conv4_3_CPM" top: "conv4_4_CPM" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu4_4_CPM" type: "ReLU" bottom: "conv4_4_CPM" top: "conv4_4_CPM" } layer { name: "conv5_1_CPM_L1" type: "Convolution" bottom: "conv4_4_CPM" top: "conv5_1_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_1_CPM_L1" type: "ReLU" bottom: "conv5_1_CPM_L1" top: "conv5_1_CPM_L1" } layer { name: "conv5_1_CPM_L2" type: "Convolution" bottom: "conv4_4_CPM" top: "conv5_1_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_1_CPM_L2" type: "ReLU" bottom: "conv5_1_CPM_L2" top: "conv5_1_CPM_L2" } layer { name: "conv5_2_CPM_L1" type: "Convolution" bottom: "conv5_1_CPM_L1" top: "conv5_2_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_2_CPM_L1" type: "ReLU" bottom: "conv5_2_CPM_L1" top: "conv5_2_CPM_L1" } layer { name: "conv5_2_CPM_L2" type: "Convolution" bottom: "conv5_1_CPM_L2" top: "conv5_2_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_2_CPM_L2" type: "ReLU" bottom: "conv5_2_CPM_L2" top: "conv5_2_CPM_L2" } layer { name: "conv5_3_CPM_L1" type: "Convolution" bottom: "conv5_2_CPM_L1" top: "conv5_3_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_3_CPM_L1" type: "ReLU" bottom: "conv5_3_CPM_L1" top: "conv5_3_CPM_L1" } layer { name: "conv5_3_CPM_L2" type: "Convolution" bottom: "conv5_2_CPM_L2" top: "conv5_3_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_3_CPM_L2" type: "ReLU" bottom: "conv5_3_CPM_L2" top: "conv5_3_CPM_L2" } layer { name: "conv5_4_CPM_L1" type: "Convolution" bottom: "conv5_3_CPM_L1" top: "conv5_4_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 512 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_4_CPM_L1" type: "ReLU" bottom: "conv5_4_CPM_L1" top: "conv5_4_CPM_L1" } layer { name: "conv5_4_CPM_L2" type: "Convolution" bottom: "conv5_3_CPM_L2" top: "conv5_4_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 512 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "relu5_4_CPM_L2" type: "ReLU" bottom: "conv5_4_CPM_L2" top: "conv5_4_CPM_L2" } layer { name: "conv5_5_CPM_L1" type: "Convolution" bottom: "conv5_4_CPM_L1" top: "conv5_5_CPM_L1" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 48#PAF pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "conv5_5_CPM_L2" type: "Convolution" bottom: "conv5_4_CPM_L2" top: "conv5_5_CPM_L2" param { lr_mult: 1.0 decay_mult: 1 } param { lr_mult: 2.0 decay_mult: 0 } convolution_param { num_output: 32#PAF/2 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage2" type: "Concat" bottom: "conv5_5_CPM_L1" bottom: "conv5_5_CPM_L2" bottom: "conv4_4_CPM" top: "concat_stage2" concat_param { axis: 1 } } layer { name: "Mconv1_stage2_L1" type: "Convolution" bottom: "concat_stage2" top: "Mconv1_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage2_L1" type: "ReLU" bottom: "Mconv1_stage2_L1" top: "Mconv1_stage2_L1" } layer { name: "Mconv1_stage2_L2" type: "Convolution" bottom: "concat_stage2" top: "Mconv1_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage2_L2" type: "ReLU" bottom: "Mconv1_stage2_L2" top: "Mconv1_stage2_L2" } layer { name: "Mconv2_stage2_L1" type: "Convolution" bottom: "Mconv1_stage2_L1" top: "Mconv2_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage2_L1" type: "ReLU" bottom: "Mconv2_stage2_L1" top: "Mconv2_stage2_L1" } layer { name: "Mconv2_stage2_L2" type: "Convolution" bottom: "Mconv1_stage2_L2" top: "Mconv2_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage2_L2" type: "ReLU" bottom: "Mconv2_stage2_L2" top: "Mconv2_stage2_L2" } layer { name: "Mconv3_stage2_L1" type: "Convolution" bottom: "Mconv2_stage2_L1" top: "Mconv3_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage2_L1" type: "ReLU" bottom: "Mconv3_stage2_L1" top: "Mconv3_stage2_L1" } layer { name: "Mconv3_stage2_L2" type: "Convolution" bottom: "Mconv2_stage2_L2" top: "Mconv3_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage2_L2" type: "ReLU" bottom: "Mconv3_stage2_L2" top: "Mconv3_stage2_L2" } layer { name: "Mconv4_stage2_L1" type: "Convolution" bottom: "Mconv3_stage2_L1" top: "Mconv4_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage2_L1" type: "ReLU" bottom: "Mconv4_stage2_L1" top: "Mconv4_stage2_L1" } layer { name: "Mconv4_stage2_L2" type: "Convolution" bottom: "Mconv3_stage2_L2" top: "Mconv4_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage2_L2" type: "ReLU" bottom: "Mconv4_stage2_L2" top: "Mconv4_stage2_L2" } layer { name: "Mconv5_stage2_L1" type: "Convolution" bottom: "Mconv4_stage2_L1" top: "Mconv5_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage2_L1" type: "ReLU" bottom: "Mconv5_stage2_L1" top: "Mconv5_stage2_L1" } layer { name: "Mconv5_stage2_L2" type: "Convolution" bottom: "Mconv4_stage2_L2" top: "Mconv5_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage2_L2" type: "ReLU" bottom: "Mconv5_stage2_L2" top: "Mconv5_stage2_L2" } layer { name: "Mconv6_stage2_L1" type: "Convolution" bottom: "Mconv5_stage2_L1" top: "Mconv6_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage2_L1" type: "ReLU" bottom: "Mconv6_stage2_L1" top: "Mconv6_stage2_L1" } layer { name: "Mconv6_stage2_L2" type: "Convolution" bottom: "Mconv5_stage2_L2" top: "Mconv6_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage2_L2" type: "ReLU" bottom: "Mconv6_stage2_L2" top: "Mconv6_stage2_L2" } layer { name: "Mconv7_stage2_L1" type: "Convolution" bottom: "Mconv6_stage2_L1" top: "Mconv7_stage2_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 48#PAF pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage2_L2" type: "Convolution" bottom: "Mconv6_stage2_L2" top: "Mconv7_stage2_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 32#PAF/2 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage3" type: "Concat" bottom: "Mconv7_stage2_L1" bottom: "Mconv7_stage2_L2" bottom: "conv4_4_CPM" top: "concat_stage3" concat_param { axis: 1 } } layer { name: "Mconv1_stage3_L1" type: "Convolution" bottom: "concat_stage3" top: "Mconv1_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage3_L1" type: "ReLU" bottom: "Mconv1_stage3_L1" top: "Mconv1_stage3_L1" } layer { name: "Mconv1_stage3_L2" type: "Convolution" bottom: "concat_stage3" top: "Mconv1_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage3_L2" type: "ReLU" bottom: "Mconv1_stage3_L2" top: "Mconv1_stage3_L2" } layer { name: "Mconv2_stage3_L1" type: "Convolution" bottom: "Mconv1_stage3_L1" top: "Mconv2_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage3_L1" type: "ReLU" bottom: "Mconv2_stage3_L1" top: "Mconv2_stage3_L1" } layer { name: "Mconv2_stage3_L2" type: "Convolution" bottom: "Mconv1_stage3_L2" top: "Mconv2_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage3_L2" type: "ReLU" bottom: "Mconv2_stage3_L2" top: "Mconv2_stage3_L2" } layer { name: "Mconv3_stage3_L1" type: "Convolution" bottom: "Mconv2_stage3_L1" top: "Mconv3_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage3_L1" type: "ReLU" bottom: "Mconv3_stage3_L1" top: "Mconv3_stage3_L1" } layer { name: "Mconv3_stage3_L2" type: "Convolution" bottom: "Mconv2_stage3_L2" top: "Mconv3_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage3_L2" type: "ReLU" bottom: "Mconv3_stage3_L2" top: "Mconv3_stage3_L2" } layer { name: "Mconv4_stage3_L1" type: "Convolution" bottom: "Mconv3_stage3_L1" top: "Mconv4_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage3_L1" type: "ReLU" bottom: "Mconv4_stage3_L1" top: "Mconv4_stage3_L1" } layer { name: "Mconv4_stage3_L2" type: "Convolution" bottom: "Mconv3_stage3_L2" top: "Mconv4_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage3_L2" type: "ReLU" bottom: "Mconv4_stage3_L2" top: "Mconv4_stage3_L2" } layer { name: "Mconv5_stage3_L1" type: "Convolution" bottom: "Mconv4_stage3_L1" top: "Mconv5_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage3_L1" type: "ReLU" bottom: "Mconv5_stage3_L1" top: "Mconv5_stage3_L1" } layer { name: "Mconv5_stage3_L2" type: "Convolution" bottom: "Mconv4_stage3_L2" top: "Mconv5_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage3_L2" type: "ReLU" bottom: "Mconv5_stage3_L2" top: "Mconv5_stage3_L2" } layer { name: "Mconv6_stage3_L1" type: "Convolution" bottom: "Mconv5_stage3_L1" top: "Mconv6_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage3_L1" type: "ReLU" bottom: "Mconv6_stage3_L1" top: "Mconv6_stage3_L1" } layer { name: "Mconv6_stage3_L2" type: "Convolution" bottom: "Mconv5_stage3_L2" top: "Mconv6_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage3_L2" type: "ReLU" bottom: "Mconv6_stage3_L2" top: "Mconv6_stage3_L2" } layer { name: "Mconv7_stage3_L1" type: "Convolution" bottom: "Mconv6_stage3_L1" top: "Mconv7_stage3_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 48#PAF pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage3_L2" type: "Convolution" bottom: "Mconv6_stage3_L2" top: "Mconv7_stage3_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 32#PAF/2 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage4" type: "Concat" bottom: "Mconv7_stage3_L1" bottom: "Mconv7_stage3_L2" bottom: "conv4_4_CPM" top: "concat_stage4" concat_param { axis: 1 } } layer { name: "Mconv1_stage4_L1" type: "Convolution" bottom: "concat_stage4" top: "Mconv1_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage4_L1" type: "ReLU" bottom: "Mconv1_stage4_L1" top: "Mconv1_stage4_L1" } layer { name: "Mconv1_stage4_L2" type: "Convolution" bottom: "concat_stage4" top: "Mconv1_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage4_L2" type: "ReLU" bottom: "Mconv1_stage4_L2" top: "Mconv1_stage4_L2" } layer { name: "Mconv2_stage4_L1" type: "Convolution" bottom: "Mconv1_stage4_L1" top: "Mconv2_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage4_L1" type: "ReLU" bottom: "Mconv2_stage4_L1" top: "Mconv2_stage4_L1" } layer { name: "Mconv2_stage4_L2" type: "Convolution" bottom: "Mconv1_stage4_L2" top: "Mconv2_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage4_L2" type: "ReLU" bottom: "Mconv2_stage4_L2" top: "Mconv2_stage4_L2" } layer { name: "Mconv3_stage4_L1" type: "Convolution" bottom: "Mconv2_stage4_L1" top: "Mconv3_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage4_L1" type: "ReLU" bottom: "Mconv3_stage4_L1" top: "Mconv3_stage4_L1" } layer { name: "Mconv3_stage4_L2" type: "Convolution" bottom: "Mconv2_stage4_L2" top: "Mconv3_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage4_L2" type: "ReLU" bottom: "Mconv3_stage4_L2" top: "Mconv3_stage4_L2" } layer { name: "Mconv4_stage4_L1" type: "Convolution" bottom: "Mconv3_stage4_L1" top: "Mconv4_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage4_L1" type: "ReLU" bottom: "Mconv4_stage4_L1" top: "Mconv4_stage4_L1" } layer { name: "Mconv4_stage4_L2" type: "Convolution" bottom: "Mconv3_stage4_L2" top: "Mconv4_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage4_L2" type: "ReLU" bottom: "Mconv4_stage4_L2" top: "Mconv4_stage4_L2" } layer { name: "Mconv5_stage4_L1" type: "Convolution" bottom: "Mconv4_stage4_L1" top: "Mconv5_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage4_L1" type: "ReLU" bottom: "Mconv5_stage4_L1" top: "Mconv5_stage4_L1" } layer { name: "Mconv5_stage4_L2" type: "Convolution" bottom: "Mconv4_stage4_L2" top: "Mconv5_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage4_L2" type: "ReLU" bottom: "Mconv5_stage4_L2" top: "Mconv5_stage4_L2" } layer { name: "Mconv6_stage4_L1" type: "Convolution" bottom: "Mconv5_stage4_L1" top: "Mconv6_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage4_L1" type: "ReLU" bottom: "Mconv6_stage4_L1" top: "Mconv6_stage4_L1" } layer { name: "Mconv6_stage4_L2" type: "Convolution" bottom: "Mconv5_stage4_L2" top: "Mconv6_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage4_L2" type: "ReLU" bottom: "Mconv6_stage4_L2" top: "Mconv6_stage4_L2" } layer { name: "Mconv7_stage4_L1" type: "Convolution" bottom: "Mconv6_stage4_L1" top: "Mconv7_stage4_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 48#PAF pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage4_L2" type: "Convolution" bottom: "Mconv6_stage4_L2" top: "Mconv7_stage4_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 32#PAF/2 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage5" type: "Concat" bottom: "Mconv7_stage4_L1" bottom: "Mconv7_stage4_L2" bottom: "conv4_4_CPM" top: "concat_stage5" concat_param { axis: 1 } } layer { name: "Mconv1_stage5_L1" type: "Convolution" bottom: "concat_stage5" top: "Mconv1_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage5_L1" type: "ReLU" bottom: "Mconv1_stage5_L1" top: "Mconv1_stage5_L1" } layer { name: "Mconv1_stage5_L2" type: "Convolution" bottom: "concat_stage5" top: "Mconv1_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage5_L2" type: "ReLU" bottom: "Mconv1_stage5_L2" top: "Mconv1_stage5_L2" } layer { name: "Mconv2_stage5_L1" type: "Convolution" bottom: "Mconv1_stage5_L1" top: "Mconv2_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage5_L1" type: "ReLU" bottom: "Mconv2_stage5_L1" top: "Mconv2_stage5_L1" } layer { name: "Mconv2_stage5_L2" type: "Convolution" bottom: "Mconv1_stage5_L2" top: "Mconv2_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage5_L2" type: "ReLU" bottom: "Mconv2_stage5_L2" top: "Mconv2_stage5_L2" } layer { name: "Mconv3_stage5_L1" type: "Convolution" bottom: "Mconv2_stage5_L1" top: "Mconv3_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage5_L1" type: "ReLU" bottom: "Mconv3_stage5_L1" top: "Mconv3_stage5_L1" } layer { name: "Mconv3_stage5_L2" type: "Convolution" bottom: "Mconv2_stage5_L2" top: "Mconv3_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage5_L2" type: "ReLU" bottom: "Mconv3_stage5_L2" top: "Mconv3_stage5_L2" } layer { name: "Mconv4_stage5_L1" type: "Convolution" bottom: "Mconv3_stage5_L1" top: "Mconv4_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage5_L1" type: "ReLU" bottom: "Mconv4_stage5_L1" top: "Mconv4_stage5_L1" } layer { name: "Mconv4_stage5_L2" type: "Convolution" bottom: "Mconv3_stage5_L2" top: "Mconv4_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage5_L2" type: "ReLU" bottom: "Mconv4_stage5_L2" top: "Mconv4_stage5_L2" } layer { name: "Mconv5_stage5_L1" type: "Convolution" bottom: "Mconv4_stage5_L1" top: "Mconv5_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage5_L1" type: "ReLU" bottom: "Mconv5_stage5_L1" top: "Mconv5_stage5_L1" } layer { name: "Mconv5_stage5_L2" type: "Convolution" bottom: "Mconv4_stage5_L2" top: "Mconv5_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage5_L2" type: "ReLU" bottom: "Mconv5_stage5_L2" top: "Mconv5_stage5_L2" } layer { name: "Mconv6_stage5_L1" type: "Convolution" bottom: "Mconv5_stage5_L1" top: "Mconv6_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage5_L1" type: "ReLU" bottom: "Mconv6_stage5_L1" top: "Mconv6_stage5_L1" } layer { name: "Mconv6_stage5_L2" type: "Convolution" bottom: "Mconv5_stage5_L2" top: "Mconv6_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage5_L2" type: "ReLU" bottom: "Mconv6_stage5_L2" top: "Mconv6_stage5_L2" } layer { name: "Mconv7_stage5_L1" type: "Convolution" bottom: "Mconv6_stage5_L1" top: "Mconv7_stage5_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 48#PAF pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage5_L2" type: "Convolution" bottom: "Mconv6_stage5_L2" top: "Mconv7_stage5_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 32#PAF/2 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "concat_stage6" type: "Concat" bottom: "Mconv7_stage5_L1" bottom: "Mconv7_stage5_L2" bottom: "conv4_4_CPM" top: "concat_stage6" concat_param { axis: 1 } } layer { name: "Mconv1_stage6_L1" type: "Convolution" bottom: "concat_stage6" top: "Mconv1_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage6_L1" type: "ReLU" bottom: "Mconv1_stage6_L1" top: "Mconv1_stage6_L1" } layer { name: "Mconv1_stage6_L2" type: "Convolution" bottom: "concat_stage6" top: "Mconv1_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu1_stage6_L2" type: "ReLU" bottom: "Mconv1_stage6_L2" top: "Mconv1_stage6_L2" } layer { name: "Mconv2_stage6_L1" type: "Convolution" bottom: "Mconv1_stage6_L1" top: "Mconv2_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage6_L1" type: "ReLU" bottom: "Mconv2_stage6_L1" top: "Mconv2_stage6_L1" } layer { name: "Mconv2_stage6_L2" type: "Convolution" bottom: "Mconv1_stage6_L2" top: "Mconv2_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu2_stage6_L2" type: "ReLU" bottom: "Mconv2_stage6_L2" top: "Mconv2_stage6_L2" } layer { name: "Mconv3_stage6_L1" type: "Convolution" bottom: "Mconv2_stage6_L1" top: "Mconv3_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage6_L1" type: "ReLU" bottom: "Mconv3_stage6_L1" top: "Mconv3_stage6_L1" } layer { name: "Mconv3_stage6_L2" type: "Convolution" bottom: "Mconv2_stage6_L2" top: "Mconv3_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu3_stage6_L2" type: "ReLU" bottom: "Mconv3_stage6_L2" top: "Mconv3_stage6_L2" } layer { name: "Mconv4_stage6_L1" type: "Convolution" bottom: "Mconv3_stage6_L1" top: "Mconv4_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage6_L1" type: "ReLU" bottom: "Mconv4_stage6_L1" top: "Mconv4_stage6_L1" } layer { name: "Mconv4_stage6_L2" type: "Convolution" bottom: "Mconv3_stage6_L2" top: "Mconv4_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu4_stage6_L2" type: "ReLU" bottom: "Mconv4_stage6_L2" top: "Mconv4_stage6_L2" } layer { name: "Mconv5_stage6_L1" type: "Convolution" bottom: "Mconv4_stage6_L1" top: "Mconv5_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage6_L1" type: "ReLU" bottom: "Mconv5_stage6_L1" top: "Mconv5_stage6_L1" } layer { name: "Mconv5_stage6_L2" type: "Convolution" bottom: "Mconv4_stage6_L2" top: "Mconv5_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 1 kernel_size: 3 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu5_stage6_L2" type: "ReLU" bottom: "Mconv5_stage6_L2" top: "Mconv5_stage6_L2" } layer { name: "Mconv6_stage6_L1" type: "Convolution" bottom: "Mconv5_stage6_L1" top: "Mconv6_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage6_L1" type: "ReLU" bottom: "Mconv6_stage6_L1" top: "Mconv6_stage6_L1" } layer { name: "Mconv6_stage6_L2" type: "Convolution" bottom: "Mconv5_stage6_L2" top: "Mconv6_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 64 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mrelu6_stage6_L2" type: "ReLU" bottom: "Mconv6_stage6_L2" top: "Mconv6_stage6_L2" } layer { name: "Mconv7_stage6_L1" type: "Convolution" bottom: "Mconv6_stage6_L1" top: "Mconv7_stage6_L1" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 48#PAF pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } layer { name: "Mconv7_stage6_L2" type: "Convolution" bottom: "Mconv6_stage6_L2" top: "Mconv7_stage6_L2" param { lr_mult: 4.0 decay_mult: 1 } param { lr_mult: 8.0 decay_mult: 0 } convolution_param { num_output: 32#PAF/2 pad: 0 kernel_size: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" } } } ###############################all the same################################### layer { name: "concat_stage7" type: "Concat" bottom: "Mconv7_stage6_L1" bottom: "Mconv7_stage6_L2" # top: "concat_stage7" top: "net_output" concat_param { axis: 1 } }