name: "face_64" input: "data" input_shape { dim:1 dim:3 dim:64 dim:64 } layer { name: "ConvNdBackward1" type: "Convolution" bottom: "data" top: "ConvNdBackward1" convolution_param { num_output: 32 group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride: 1 dilation: 1 } } layer { name: "BatchNormBackward2_bn" type: "BatchNorm" bottom: "ConvNdBackward1" top: "BatchNormBackward2" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "BatchNormBackward2_scale" type: "Scale" bottom: "BatchNormBackward2" top: "BatchNormBackward2" scale_param { bias_term: true } } layer { name: "ThresholdBackward3" type: "ReLU" bottom: "BatchNormBackward2" top: "BatchNormBackward2" } layer { name: "MaxPool2dBackward4" type: "Pooling" bottom: "BatchNormBackward2" top: "MaxPool2dBackward4" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "ConvNdBackward5" type: "Convolution" bottom: "MaxPool2dBackward4" top: "ConvNdBackward5" convolution_param { num_output: 32 group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride: 1 dilation: 1 } } layer { name: "BatchNormBackward6_bn" type: "BatchNorm" bottom: "ConvNdBackward5" top: "BatchNormBackward6" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "BatchNormBackward6_scale" type: "Scale" bottom: "BatchNormBackward6" top: "BatchNormBackward6" scale_param { bias_term: true } } layer { name: "ThresholdBackward7" type: "ReLU" bottom: "BatchNormBackward6" top: "BatchNormBackward6" } layer { name: "MaxPool2dBackward8" type: "Pooling" bottom: "BatchNormBackward6" top: "MaxPool2dBackward8" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "ConvNdBackward9" type: "Convolution" bottom: "MaxPool2dBackward8" top: "ConvNdBackward9" convolution_param { num_output: 64 group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride: 1 dilation: 1 } } layer { name: "BatchNormBackward10_bn" type: "BatchNorm" bottom: "ConvNdBackward9" top: "BatchNormBackward10" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "BatchNormBackward10_scale" type: "Scale" bottom: "BatchNormBackward10" top: "BatchNormBackward10" scale_param { bias_term: true } } layer { name: "ThresholdBackward11" type: "ReLU" bottom: "BatchNormBackward10" top: "BatchNormBackward10" } layer { name: "MaxPool2dBackward12" type: "Pooling" bottom: "BatchNormBackward10" top: "MaxPool2dBackward12" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "ConvNdBackward13" type: "Convolution" bottom: "MaxPool2dBackward12" top: "ConvNdBackward13" convolution_param { num_output: 128 group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride: 1 dilation: 1 } } layer { name: "BatchNormBackward14_bn" type: "BatchNorm" bottom: "ConvNdBackward13" top: "BatchNormBackward14" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "BatchNormBackward14_scale" type: "Scale" bottom: "BatchNormBackward14" top: "BatchNormBackward14" scale_param { bias_term: true } } layer { name: "ThresholdBackward15" type: "ReLU" bottom: "BatchNormBackward14" top: "BatchNormBackward14" } layer { name: "MaxPool2dBackward16" type: "Pooling" bottom: "BatchNormBackward14" top: "MaxPool2dBackward16" pooling_param { pool: MAX kernel_size: 2 stride: 2 pad: 0 } } layer { name: "ConvNdBackward17" type: "Convolution" bottom: "MaxPool2dBackward16" top: "ConvNdBackward17" convolution_param { num_output: 32 group: 1 pad_h: 1 pad_w: 1 kernel_h: 3 kernel_w: 3 stride: 1 dilation: 1 } } layer { name: "BatchNormBackward18_bn" type: "BatchNorm" bottom: "ConvNdBackward17" top: "BatchNormBackward18" batch_norm_param { use_global_stats: true eps: 1e-05 } } layer { name: "BatchNormBackward18_scale" type: "Scale" bottom: "BatchNormBackward18" top: "BatchNormBackward18" scale_param { bias_term: true } } layer { name: "ThresholdBackward19" type: "ReLU" bottom: "BatchNormBackward18" top: "BatchNormBackward18" } layer { name: "AvgPool2dBackward20" type: "Pooling" bottom: "BatchNormBackward18" top: "AvgPool2dBackward20" pooling_param { pool: AVE kernel_size: 4 stride: 4 pad: 0 } } layer { name: "ConvNdBackward21" type: "Convolution" bottom: "AvgPool2dBackward20" top: "ConvNdBackward21" convolution_param { num_output: 2 group: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 1 stride: 1 dilation: 1 bias_term: false } } layer { name:"prob" type:"Softmax" bottom:"ConvNdBackward21" top:"prob" }