# Enter your network definition here. # Use Shift+Enter to update the visualization. # Enter your network definition here. # Use Shift+Enter to update the visualization. # Enter your network definition here. # Use Shift+Enter to update the visualization. name: "RNet" input: "data" input_dim: 6 input_dim: 1 input_dim: 32 input_dim: 512 ########################## ###################### layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 3 stride: 1 pad:1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "prelu1" type: "PReLU" bottom: "conv1" top: "conv1" propagate_down: true } layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "conv2" type: "Convolution" bottom: "pool1" top: "conv2" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 3 stride: 1 pad: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "prelu2" type: "PReLU" bottom: "conv2" top: "conv2" propagate_down: true } ################################## layer { name: "conv3" type: "Convolution" bottom: "conv2" top: "conv3" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 3 stride: 1 pad: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "prelu3" type: "PReLU" bottom: "conv3" top: "conv3" propagate_down: true } layer { name: "pool3" type: "Pooling" bottom: "conv3" top: "pool3" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } ############################### ############################### # conv4 layer { name: "conv4" type: "Convolution" bottom: "pool3" top: "conv4" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 3 stride: 1 pad: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "prelu4" type: "PReLU" bottom: "conv4" top: "conv4" propagate_down: true } layer { name: "pool4" type: "Pooling" bottom: "conv4" top: "pool4" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } #### conv5 layer { name: "conv5" type: "Convolution" bottom: "pool4" top: "conv5" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 256 kernel_size: 4 stride: 1 pad_w: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "prelu5" type: "PReLU" bottom: "conv5" top: "conv5" propagate_down: true } #### tail layer { name: "conv6" type: "Convolution" bottom: "conv5" top: "conv6" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 81 kernel_size: 1 stride: 1 pad: 0 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "prelu6" type: "PReLU" bottom: "conv6" top: "conv6_prelu" propagate_down: true } ### class ### layer { name: "prelu6_1" type: "PReLU" bottom: "conv6" top: "conv6_prelu_1" propagate_down: true } layer { name: "relu6" type: "ReLU" bottom: "conv6_prelu_1" top: "conv6_relu" } layer { name: "conv1d1" type: "Convolution" bottom: "conv6_relu" top: "conv1d1_conv" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 16 stride: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 7 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1d1" type: "ReLU" bottom: "conv1d1_conv" top: "conv1d1_relu" } layer { name: "pool1d1" type: "Pooling" bottom: "conv1d1_relu" top: "conv1d1" pooling_param { pool: MAX kernel_h: 1 kernel_w: 3 stride_w: 3 stride_h: 1 } } #conv1d2 layer { name: "conv1d2" type: "Convolution" bottom: "conv1d1" top: "conv1d2_conv" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 16 stride: 1 pad_h: 0 pad_w: 0 kernel_h: 1 kernel_w: 7 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1d2" type: "ReLU" bottom: "conv1d2_conv" top: "conv1d2_relu" } layer { name: "pool1d2" type: "Pooling" bottom: "conv1d2_relu" top: "conv1d2" pooling_param { pool: MAX kernel_h: 1 kernel_w: 3 stride_w: 3 stride_h: 1 } } #fc1 layer { name: "classifier1" type: "InnerProduct" bottom: "conv1d2" top: "classifier1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 32 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relufc1" type: "ReLU" bottom: "classifier1" top: "classifier1" } layer { name: "dropfc1" type: "Dropout" bottom: "classifier1" top: "classifier1" dropout_param { dropout_ratio: 0.2 } } #fc3 layer { name: "classifier3" type: "InnerProduct" bottom: "classifier1" top: "classifier3" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } }