# Enter your network definition here. # Use Shift+Enter to update the visualization. name: "LatinNet" input: "data" input_dim: 12 input_dim: 48 input_dim: 1 input_dim: 50 ### class ### layer { name: "conv1D1" type: "Convolution" bottom: "data" top: "conv1D1_conv" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 32 stride: 1 pad_h: 0 pad_w: 1 kernel_h: 1 kernel_w: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1D1" type: "ReLU" bottom: "conv1D1_conv" top: "conv1D1_relu" } layer { name: "pool1D1" type: "Pooling" bottom: "conv1D1_relu" top: "conv1D1" pooling_param { pool: MAX kernel_h: 1 kernel_w: 3 stride_w: 2 stride_h: 1 } } #conv1d2 layer { name: "conv1D2" type: "Convolution" bottom: "conv1D1" top: "conv1D2_conv" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 stride: 1 pad_h: 0 pad_w: 1 kernel_h: 1 kernel_w: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1D2" type: "ReLU" bottom: "conv1D2_conv" top: "conv1D2_relu" } layer { name: "pool1D2" type: "Pooling" bottom: "conv1D2_relu" top: "conv1D2" pooling_param { pool: MAX kernel_h: 1 kernel_w: 3 stride_w: 2 stride_h: 1 } } #conv1d3 layer { name: "conv1D3" type: "Convolution" bottom: "conv1D2" top: "conv1D3_conv" param { lr_mult: 0 decay_mult: 0 } param { lr_mult: 0 decay_mult: 0 } convolution_param { num_output: 64 stride: 2 pad_h: 0 pad_w: 1 kernel_h: 1 kernel_w: 3 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "relu1D3" type: "ReLU" bottom: "conv1D3_conv" top: "conv1D3_relu" } layer { name: "pool1D3" type: "Pooling" bottom: "conv1D3_relu" top: "conv1D3" pooling_param { pool: MAX kernel_h: 1 kernel_w: 3 stride_w: 2 stride_h: 1 } } #fc1 layer { name: "classifier1" type: "InnerProduct" bottom: "conv1D3" top: "classifier1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 64 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } # #layer { # # name: "relufc1" # # type: "ReLU" # # bottom: "classifier1" # # top: "classifier1" # #} # #layer { # # name: "dropfc1" # # type: "Dropout" # # bottom: "classifier1" # # top: "classifier1" # # dropout_param { # # dropout_ratio: 0.2 # # } # #} #fc2 layer { name: "classifier2" type: "InnerProduct" bottom: "classifier1" top: "classifier2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 6 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } # #layer { # # name: "relufc2" # # type: "ReLU" # # bottom: "classifier2" # # top: "classifier2" # # propagate_down: true # #} # #layer { # # name: "dropfc2" # # type: "Dropout" # # bottom: "classifier2" # # top: "classifier2" # # dropout_param { # # dropout_ratio: 0.2 # # } # #}