name: "Darkent2Caffe-Cut-6.4" layer { name: "data" type: "Input" top: "data" input_param { shape { dim: 1 dim: 3 dim: 384 dim: 672 } } } layer { name: "layer1-conv" type: "Convolution" bottom: "data" top: "layer1-conv" convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer1-bn" type: "BatchNorm" bottom: "layer1-conv" top: "layer1-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer1-scale" type: "Scale" bottom: "layer1-conv" top: "layer1-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer1-act" type: "ReLU" bottom: "layer1-conv" top: "layer1-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer2-conv" type: "Convolution" bottom: "layer1-conv" top: "layer2-conv" convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer2-bn" type: "BatchNorm" bottom: "layer2-conv" top: "layer2-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer2-scale" type: "Scale" bottom: "layer2-conv" top: "layer2-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer2-act" type: "ReLU" bottom: "layer2-conv" top: "layer2-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer3-conv" type: "Convolution" bottom: "layer2-conv" top: "layer3-conv" convolution_param { num_output: 16 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer3-bn" type: "BatchNorm" bottom: "layer3-conv" top: "layer3-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer3-scale" type: "Scale" bottom: "layer3-conv" top: "layer3-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer3-act" type: "ReLU" bottom: "layer3-conv" top: "layer3-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer4-conv" type: "Convolution" bottom: "layer3-conv" top: "layer4-conv" convolution_param { num_output: 16 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer4-bn" type: "BatchNorm" bottom: "layer4-conv" top: "layer4-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer4-scale" type: "Scale" bottom: "layer4-conv" top: "layer4-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer4-act" type: "ReLU" bottom: "layer4-conv" top: "layer4-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer5-shortcut" type: "Eltwise" bottom: "layer2-conv" bottom: "layer4-conv" top: "layer5-shortcut" eltwise_param { operation: SUM } } layer { name: "layer6-conv" type: "Convolution" bottom: "layer5-shortcut" top: "layer6-conv" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer6-bn" type: "BatchNorm" bottom: "layer6-conv" top: "layer6-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer6-scale" type: "Scale" bottom: "layer6-conv" top: "layer6-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer6-act" type: "ReLU" bottom: "layer6-conv" top: "layer6-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer7-conv" type: "Convolution" bottom: "layer6-conv" top: "layer7-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer7-bn" type: "BatchNorm" bottom: "layer7-conv" top: "layer7-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer7-scale" type: "Scale" bottom: "layer7-conv" top: "layer7-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer7-act" type: "ReLU" bottom: "layer7-conv" top: "layer7-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer8-conv" type: "Convolution" bottom: "layer7-conv" top: "layer8-conv" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer8-bn" type: "BatchNorm" bottom: "layer8-conv" top: "layer8-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer8-scale" type: "Scale" bottom: "layer8-conv" top: "layer8-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer8-act" type: "ReLU" bottom: "layer8-conv" top: "layer8-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer9-shortcut" type: "Eltwise" bottom: "layer6-conv" bottom: "layer8-conv" top: "layer9-shortcut" eltwise_param { operation: SUM } } layer { name: "layer10-conv" type: "Convolution" bottom: "layer9-shortcut" top: "layer10-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer10-bn" type: "BatchNorm" bottom: "layer10-conv" top: "layer10-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer10-scale" type: "Scale" bottom: "layer10-conv" top: "layer10-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer10-act" type: "ReLU" bottom: "layer10-conv" top: "layer10-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer11-conv" type: "Convolution" bottom: "layer10-conv" top: "layer11-conv" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer11-bn" type: "BatchNorm" bottom: "layer11-conv" top: "layer11-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer11-scale" type: "Scale" bottom: "layer11-conv" top: "layer11-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer11-act" type: "ReLU" bottom: "layer11-conv" top: "layer11-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer12-shortcut" type: "Eltwise" bottom: "layer9-shortcut" bottom: "layer11-conv" top: "layer12-shortcut" eltwise_param { operation: SUM } } layer { name: "layer13-conv" type: "Convolution" bottom: "layer12-shortcut" top: "layer13-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer13-bn" type: "BatchNorm" bottom: "layer13-conv" top: "layer13-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer13-scale" type: "Scale" bottom: "layer13-conv" top: "layer13-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer13-act" type: "ReLU" bottom: "layer13-conv" top: "layer13-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer14-conv" type: "Convolution" bottom: "layer13-conv" top: "layer14-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer14-bn" type: "BatchNorm" bottom: "layer14-conv" top: "layer14-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer14-scale" type: "Scale" bottom: "layer14-conv" top: "layer14-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer14-act" type: "ReLU" bottom: "layer14-conv" top: "layer14-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer15-conv" type: "Convolution" bottom: "layer14-conv" top: "layer15-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer15-bn" type: "BatchNorm" bottom: "layer15-conv" top: "layer15-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer15-scale" type: "Scale" bottom: "layer15-conv" top: "layer15-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer15-act" type: "ReLU" bottom: "layer15-conv" top: "layer15-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer16-shortcut" type: "Eltwise" bottom: "layer13-conv" bottom: "layer15-conv" top: "layer16-shortcut" eltwise_param { operation: SUM } } layer { name: "layer17-conv" type: "Convolution" bottom: "layer16-shortcut" top: "layer17-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer17-bn" type: "BatchNorm" bottom: "layer17-conv" top: "layer17-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer17-scale" type: "Scale" bottom: "layer17-conv" top: "layer17-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer17-act" type: "ReLU" bottom: "layer17-conv" top: "layer17-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer18-conv" type: "Convolution" bottom: "layer17-conv" top: "layer18-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer18-bn" type: "BatchNorm" bottom: "layer18-conv" top: "layer18-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer18-scale" type: "Scale" bottom: "layer18-conv" top: "layer18-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer18-act" type: "ReLU" bottom: "layer18-conv" top: "layer18-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer19-shortcut" type: "Eltwise" bottom: "layer16-shortcut" bottom: "layer18-conv" top: "layer19-shortcut" eltwise_param { operation: SUM } } layer { name: "layer20-conv" type: "Convolution" bottom: "layer19-shortcut" top: "layer20-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer20-bn" type: "BatchNorm" bottom: "layer20-conv" top: "layer20-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer20-scale" type: "Scale" bottom: "layer20-conv" top: "layer20-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer20-act" type: "ReLU" bottom: "layer20-conv" top: "layer20-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer21-conv" type: "Convolution" bottom: "layer20-conv" top: "layer21-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer21-bn" type: "BatchNorm" bottom: "layer21-conv" top: "layer21-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer21-scale" type: "Scale" bottom: "layer21-conv" top: "layer21-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer21-act" type: "ReLU" bottom: "layer21-conv" top: "layer21-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer22-shortcut" type: "Eltwise" bottom: "layer19-shortcut" bottom: "layer21-conv" top: "layer22-shortcut" eltwise_param { operation: SUM } } layer { name: "layer23-conv" type: "Convolution" bottom: "layer22-shortcut" top: "layer23-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer23-bn" type: "BatchNorm" bottom: "layer23-conv" top: "layer23-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer23-scale" type: "Scale" bottom: "layer23-conv" top: "layer23-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer23-act" type: "ReLU" bottom: "layer23-conv" top: "layer23-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer24-conv" type: "Convolution" bottom: "layer23-conv" top: "layer24-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer24-bn" type: "BatchNorm" bottom: "layer24-conv" top: "layer24-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer24-scale" type: "Scale" bottom: "layer24-conv" top: "layer24-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer24-act" type: "ReLU" bottom: "layer24-conv" top: "layer24-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer25-shortcut" type: "Eltwise" bottom: "layer22-shortcut" bottom: "layer24-conv" top: "layer25-shortcut" eltwise_param { operation: SUM } } layer { name: "layer26-conv" type: "Convolution" bottom: "layer25-shortcut" top: "layer26-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer26-bn" type: "BatchNorm" bottom: "layer26-conv" top: "layer26-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer26-scale" type: "Scale" bottom: "layer26-conv" top: "layer26-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer26-act" type: "ReLU" bottom: "layer26-conv" top: "layer26-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer27-conv" type: "Convolution" bottom: "layer26-conv" top: "layer27-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer27-bn" type: "BatchNorm" bottom: "layer27-conv" top: "layer27-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer27-scale" type: "Scale" bottom: "layer27-conv" top: "layer27-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer27-act" type: "ReLU" bottom: "layer27-conv" top: "layer27-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer28-shortcut" type: "Eltwise" bottom: "layer25-shortcut" bottom: "layer27-conv" top: "layer28-shortcut" eltwise_param { operation: SUM } } layer { name: "layer29-conv" type: "Convolution" bottom: "layer28-shortcut" top: "layer29-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer29-bn" type: "BatchNorm" bottom: "layer29-conv" top: "layer29-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer29-scale" type: "Scale" bottom: "layer29-conv" top: "layer29-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer29-act" type: "ReLU" bottom: "layer29-conv" top: "layer29-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer30-conv" type: "Convolution" bottom: "layer29-conv" top: "layer30-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer30-bn" type: "BatchNorm" bottom: "layer30-conv" top: "layer30-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer30-scale" type: "Scale" bottom: "layer30-conv" top: "layer30-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer30-act" type: "ReLU" bottom: "layer30-conv" top: "layer30-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer31-shortcut" type: "Eltwise" bottom: "layer28-shortcut" bottom: "layer30-conv" top: "layer31-shortcut" eltwise_param { operation: SUM } } layer { name: "layer32-conv" type: "Convolution" bottom: "layer31-shortcut" top: "layer32-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer32-bn" type: "BatchNorm" bottom: "layer32-conv" top: "layer32-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer32-scale" type: "Scale" bottom: "layer32-conv" top: "layer32-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer32-act" type: "ReLU" bottom: "layer32-conv" top: "layer32-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer33-conv" type: "Convolution" bottom: "layer32-conv" top: "layer33-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer33-bn" type: "BatchNorm" bottom: "layer33-conv" top: "layer33-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer33-scale" type: "Scale" bottom: "layer33-conv" top: "layer33-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer33-act" type: "ReLU" bottom: "layer33-conv" top: "layer33-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer34-shortcut" type: "Eltwise" bottom: "layer31-shortcut" bottom: "layer33-conv" top: "layer34-shortcut" eltwise_param { operation: SUM } } layer { name: "layer35-conv" type: "Convolution" bottom: "layer34-shortcut" top: "layer35-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer35-bn" type: "BatchNorm" bottom: "layer35-conv" top: "layer35-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer35-scale" type: "Scale" bottom: "layer35-conv" top: "layer35-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer35-act" type: "ReLU" bottom: "layer35-conv" top: "layer35-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer36-conv" type: "Convolution" bottom: "layer35-conv" top: "layer36-conv" convolution_param { num_output: 80 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer36-bn" type: "BatchNorm" bottom: "layer36-conv" top: "layer36-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer36-scale" type: "Scale" bottom: "layer36-conv" top: "layer36-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer36-act" type: "ReLU" bottom: "layer36-conv" top: "layer36-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer37-shortcut" type: "Eltwise" bottom: "layer34-shortcut" bottom: "layer36-conv" top: "layer37-shortcut" eltwise_param { operation: SUM } } layer { name: "layer38-conv" type: "Convolution" bottom: "layer37-shortcut" top: "layer38-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer38-bn" type: "BatchNorm" bottom: "layer38-conv" top: "layer38-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer38-scale" type: "Scale" bottom: "layer38-conv" top: "layer38-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer38-act" type: "ReLU" bottom: "layer38-conv" top: "layer38-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer39-conv" type: "Convolution" bottom: "layer38-conv" top: "layer39-conv" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer39-bn" type: "BatchNorm" bottom: "layer39-conv" top: "layer39-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer39-scale" type: "Scale" bottom: "layer39-conv" top: "layer39-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer39-act" type: "ReLU" bottom: "layer39-conv" top: "layer39-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer40-conv" type: "Convolution" bottom: "layer39-conv" top: "layer40-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer40-bn" type: "BatchNorm" bottom: "layer40-conv" top: "layer40-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer40-scale" type: "Scale" bottom: "layer40-conv" top: "layer40-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer40-act" type: "ReLU" bottom: "layer40-conv" top: "layer40-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer41-shortcut" type: "Eltwise" bottom: "layer38-conv" bottom: "layer40-conv" top: "layer41-shortcut" eltwise_param { operation: SUM } } layer { name: "layer42-conv" type: "Convolution" bottom: "layer41-shortcut" top: "layer42-conv" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer42-bn" type: "BatchNorm" bottom: "layer42-conv" top: "layer42-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer42-scale" type: "Scale" bottom: "layer42-conv" top: "layer42-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer42-act" type: "ReLU" bottom: "layer42-conv" top: "layer42-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer43-conv" type: "Convolution" bottom: "layer42-conv" top: "layer43-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer43-bn" type: "BatchNorm" bottom: "layer43-conv" top: "layer43-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer43-scale" type: "Scale" bottom: "layer43-conv" top: "layer43-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer43-act" type: "ReLU" bottom: "layer43-conv" top: "layer43-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer44-shortcut" type: "Eltwise" bottom: "layer41-shortcut" bottom: "layer43-conv" top: "layer44-shortcut" eltwise_param { operation: SUM } } layer { name: "layer45-conv" type: "Convolution" bottom: "layer44-shortcut" top: "layer45-conv" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer45-bn" type: "BatchNorm" bottom: "layer45-conv" top: "layer45-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer45-scale" type: "Scale" bottom: "layer45-conv" top: "layer45-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer45-act" type: "ReLU" bottom: "layer45-conv" top: "layer45-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer46-conv" type: "Convolution" bottom: "layer45-conv" top: "layer46-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer46-bn" type: "BatchNorm" bottom: "layer46-conv" top: "layer46-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer46-scale" type: "Scale" bottom: "layer46-conv" top: "layer46-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer46-act" type: "ReLU" bottom: "layer46-conv" top: "layer46-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer47-shortcut" type: "Eltwise" bottom: "layer44-shortcut" bottom: "layer46-conv" top: "layer47-shortcut" eltwise_param { operation: SUM } } layer { name: "layer48-conv" type: "Convolution" bottom: "layer47-shortcut" top: "layer48-conv" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer48-bn" type: "BatchNorm" bottom: "layer48-conv" top: "layer48-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer48-scale" type: "Scale" bottom: "layer48-conv" top: "layer48-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer48-act" type: "ReLU" bottom: "layer48-conv" top: "layer48-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer49-conv" type: "Convolution" bottom: "layer48-conv" top: "layer49-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer49-bn" type: "BatchNorm" bottom: "layer49-conv" top: "layer49-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer49-scale" type: "Scale" bottom: "layer49-conv" top: "layer49-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer49-act" type: "ReLU" bottom: "layer49-conv" top: "layer49-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer50-shortcut" type: "Eltwise" bottom: "layer47-shortcut" bottom: "layer49-conv" top: "layer50-shortcut" eltwise_param { operation: SUM } } layer { name: "layer51-conv" type: "Convolution" bottom: "layer50-shortcut" top: "layer51-conv" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer51-bn" type: "BatchNorm" bottom: "layer51-conv" top: "layer51-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer51-scale" type: "Scale" bottom: "layer51-conv" top: "layer51-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer51-act" type: "ReLU" bottom: "layer51-conv" top: "layer51-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer52-conv" type: "Convolution" bottom: "layer51-conv" top: "layer52-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer52-bn" type: "BatchNorm" bottom: "layer52-conv" top: "layer52-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer52-scale" type: "Scale" bottom: "layer52-conv" top: "layer52-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer52-act" type: "ReLU" bottom: "layer52-conv" top: "layer52-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer53-shortcut" type: "Eltwise" bottom: "layer50-shortcut" bottom: "layer52-conv" top: "layer53-shortcut" eltwise_param { operation: SUM } } layer { name: "layer54-conv" type: "Convolution" bottom: "layer53-shortcut" top: "layer54-conv" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer54-bn" type: "BatchNorm" bottom: "layer54-conv" top: "layer54-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer54-scale" type: "Scale" bottom: "layer54-conv" top: "layer54-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer54-act" type: "ReLU" bottom: "layer54-conv" top: "layer54-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer55-conv" type: "Convolution" bottom: "layer54-conv" top: "layer55-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer55-bn" type: "BatchNorm" bottom: "layer55-conv" top: "layer55-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer55-scale" type: "Scale" bottom: "layer55-conv" top: "layer55-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer55-act" type: "ReLU" bottom: "layer55-conv" top: "layer55-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer56-shortcut" type: "Eltwise" bottom: "layer53-shortcut" bottom: "layer55-conv" top: "layer56-shortcut" eltwise_param { operation: SUM } } layer { name: "layer57-conv" type: "Convolution" bottom: "layer56-shortcut" top: "layer57-conv" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer57-bn" type: "BatchNorm" bottom: "layer57-conv" top: "layer57-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer57-scale" type: "Scale" bottom: "layer57-conv" top: "layer57-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer57-act" type: "ReLU" bottom: "layer57-conv" top: "layer57-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer58-conv" type: "Convolution" bottom: "layer57-conv" top: "layer58-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer58-bn" type: "BatchNorm" bottom: "layer58-conv" top: "layer58-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer58-scale" type: "Scale" bottom: "layer58-conv" top: "layer58-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer58-act" type: "ReLU" bottom: "layer58-conv" top: "layer58-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer59-shortcut" type: "Eltwise" bottom: "layer56-shortcut" bottom: "layer58-conv" top: "layer59-shortcut" eltwise_param { operation: SUM } } layer { name: "layer60-conv" type: "Convolution" bottom: "layer59-shortcut" top: "layer60-conv" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer60-bn" type: "BatchNorm" bottom: "layer60-conv" top: "layer60-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer60-scale" type: "Scale" bottom: "layer60-conv" top: "layer60-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer60-act" type: "ReLU" bottom: "layer60-conv" top: "layer60-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer61-conv" type: "Convolution" bottom: "layer60-conv" top: "layer61-conv" convolution_param { num_output: 128 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer61-bn" type: "BatchNorm" bottom: "layer61-conv" top: "layer61-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer61-scale" type: "Scale" bottom: "layer61-conv" top: "layer61-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer61-act" type: "ReLU" bottom: "layer61-conv" top: "layer61-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer62-shortcut" type: "Eltwise" bottom: "layer59-shortcut" bottom: "layer61-conv" top: "layer62-shortcut" eltwise_param { operation: SUM } } layer { name: "layer63-conv" type: "Convolution" bottom: "layer62-shortcut" top: "layer63-conv" convolution_param { num_output: 96 bias_term: false pad: 1 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer63-bn" type: "BatchNorm" bottom: "layer63-conv" top: "layer63-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer63-scale" type: "Scale" bottom: "layer63-conv" top: "layer63-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer63-act" type: "ReLU" bottom: "layer63-conv" top: "layer63-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer64-conv" type: "Convolution" bottom: "layer63-conv" top: "layer64-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer64-bn" type: "BatchNorm" bottom: "layer64-conv" top: "layer64-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer64-scale" type: "Scale" bottom: "layer64-conv" top: "layer64-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer64-act" type: "ReLU" bottom: "layer64-conv" top: "layer64-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer65-conv" type: "Convolution" bottom: "layer64-conv" top: "layer65-conv" convolution_param { num_output: 96 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer65-bn" type: "BatchNorm" bottom: "layer65-conv" top: "layer65-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer65-scale" type: "Scale" bottom: "layer65-conv" top: "layer65-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer65-act" type: "ReLU" bottom: "layer65-conv" top: "layer65-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer66-shortcut" type: "Eltwise" bottom: "layer63-conv" bottom: "layer65-conv" top: "layer66-shortcut" eltwise_param { operation: SUM } } layer { name: "layer67-conv" type: "Convolution" bottom: "layer66-shortcut" top: "layer67-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer67-bn" type: "BatchNorm" bottom: "layer67-conv" top: "layer67-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer67-scale" type: "Scale" bottom: "layer67-conv" top: "layer67-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer67-act" type: "ReLU" bottom: "layer67-conv" top: "layer67-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer68-conv" type: "Convolution" bottom: "layer67-conv" top: "layer68-conv" convolution_param { num_output: 96 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer68-bn" type: "BatchNorm" bottom: "layer68-conv" top: "layer68-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer68-scale" type: "Scale" bottom: "layer68-conv" top: "layer68-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer68-act" type: "ReLU" bottom: "layer68-conv" top: "layer68-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer69-shortcut" type: "Eltwise" bottom: "layer66-shortcut" bottom: "layer68-conv" top: "layer69-shortcut" eltwise_param { operation: SUM } } layer { name: "layer70-conv" type: "Convolution" bottom: "layer69-shortcut" top: "layer70-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer70-bn" type: "BatchNorm" bottom: "layer70-conv" top: "layer70-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer70-scale" type: "Scale" bottom: "layer70-conv" top: "layer70-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer70-act" type: "ReLU" bottom: "layer70-conv" top: "layer70-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer71-conv" type: "Convolution" bottom: "layer70-conv" top: "layer71-conv" convolution_param { num_output: 96 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer71-bn" type: "BatchNorm" bottom: "layer71-conv" top: "layer71-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer71-scale" type: "Scale" bottom: "layer71-conv" top: "layer71-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer71-act" type: "ReLU" bottom: "layer71-conv" top: "layer71-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer72-shortcut" type: "Eltwise" bottom: "layer69-shortcut" bottom: "layer71-conv" top: "layer72-shortcut" eltwise_param { operation: SUM } } layer { name: "layer73-conv" type: "Convolution" bottom: "layer72-shortcut" top: "layer73-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer73-bn" type: "BatchNorm" bottom: "layer73-conv" top: "layer73-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer73-scale" type: "Scale" bottom: "layer73-conv" top: "layer73-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer73-act" type: "ReLU" bottom: "layer73-conv" top: "layer73-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer74-conv" type: "Convolution" bottom: "layer73-conv" top: "layer74-conv" convolution_param { num_output: 96 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer74-bn" type: "BatchNorm" bottom: "layer74-conv" top: "layer74-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer74-scale" type: "Scale" bottom: "layer74-conv" top: "layer74-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer74-act" type: "ReLU" bottom: "layer74-conv" top: "layer74-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer75-shortcut" type: "Eltwise" bottom: "layer72-shortcut" bottom: "layer74-conv" top: "layer75-shortcut" eltwise_param { operation: SUM } } layer { name: "layer76-conv" type: "Convolution" bottom: "layer75-shortcut" top: "layer76-conv" convolution_param { num_output: 112 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer76-bn" type: "BatchNorm" bottom: "layer76-conv" top: "layer76-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer76-scale" type: "Scale" bottom: "layer76-conv" top: "layer76-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer76-act" type: "ReLU" bottom: "layer76-conv" top: "layer76-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer77-conv" type: "Convolution" bottom: "layer76-conv" top: "layer77-conv" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer77-bn" type: "BatchNorm" bottom: "layer77-conv" top: "layer77-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer77-scale" type: "Scale" bottom: "layer77-conv" top: "layer77-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer77-act" type: "ReLU" bottom: "layer77-conv" top: "layer77-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer78-conv" type: "Convolution" bottom: "layer77-conv" top: "layer78-conv" convolution_param { num_output: 512 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer78-bn" type: "BatchNorm" bottom: "layer78-conv" top: "layer78-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer78-scale" type: "Scale" bottom: "layer78-conv" top: "layer78-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer78-act" type: "ReLU" bottom: "layer78-conv" top: "layer78-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer79-maxpool" type: "Pooling" bottom: "layer78-conv" top: "layer79-maxpool" pooling_param { pool: MAX kernel_size: 5 stride: 1 pad: 2 } } layer { name: "layer80-route" type: "Concat" bottom: "layer78-conv" top: "layer80-route" } layer { name: "layer81-maxpool" type: "Pooling" bottom: "layer80-route" top: "layer81-maxpool" pooling_param { pool: MAX kernel_size: 9 stride: 1 pad: 4 } } layer { name: "layer82-route" type: "Concat" bottom: "layer78-conv" top: "layer82-route" } layer { name: "layer83-maxpool" type: "Pooling" bottom: "layer82-route" top: "layer83-maxpool" pooling_param { pool: MAX kernel_size: 13 stride: 1 pad: 6 } } layer { name: "layer84-route" type: "Concat" bottom: "layer83-maxpool" bottom: "layer81-maxpool" bottom: "layer79-maxpool" bottom: "layer78-conv" top: "layer84-route" } layer { name: "layer85-conv" type: "Convolution" bottom: "layer84-route" top: "layer85-conv" convolution_param { num_output: 48 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer85-bn" type: "BatchNorm" bottom: "layer85-conv" top: "layer85-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer85-scale" type: "Scale" bottom: "layer85-conv" top: "layer85-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer85-act" type: "ReLU" bottom: "layer85-conv" top: "layer85-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer86-conv" type: "Convolution" bottom: "layer85-conv" top: "layer86-conv" convolution_param { num_output: 96 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer86-bn" type: "BatchNorm" bottom: "layer86-conv" top: "layer86-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer86-scale" type: "Scale" bottom: "layer86-conv" top: "layer86-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer86-act" type: "ReLU" bottom: "layer86-conv" top: "layer86-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer87-conv" type: "Convolution" bottom: "layer86-conv" top: "layer87-conv" convolution_param { num_output: 80 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer87-bn" type: "BatchNorm" bottom: "layer87-conv" top: "layer87-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer87-scale" type: "Scale" bottom: "layer87-conv" top: "layer87-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer87-act" type: "ReLU" bottom: "layer87-conv" top: "layer87-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer88-conv" type: "Convolution" bottom: "layer87-conv" top: "layer88-conv" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer88-bn" type: "BatchNorm" bottom: "layer88-conv" top: "layer88-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer88-scale" type: "Scale" bottom: "layer88-conv" top: "layer88-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer88-act" type: "ReLU" bottom: "layer88-conv" top: "layer88-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer89-conv-hand" type: "Convolution" bottom: "layer88-conv" top: "layer89-conv-hand" convolution_param { num_output: 18 bias_term: true pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer91-route" type: "Concat" bottom: "layer87-conv" top: "layer91-route" } layer { name: "layer92-conv" type: "Convolution" bottom: "layer91-route" top: "layer92-conv" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer92-bn" type: "BatchNorm" bottom: "layer92-conv" top: "layer92-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer92-scale" type: "Scale" bottom: "layer92-conv" top: "layer92-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer92-act" type: "ReLU" bottom: "layer92-conv" top: "layer92-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer93-upsample-de" type: "Deconvolution" bottom: "layer92-conv" top: "layer93-upsample-de" convolution_param { stride: 2 kernel_size: 4 num_output: 64 pad: 1 bias_term: false weight_filler { type: "bilinear" } } } layer { name: "layer94-route" type: "Concat" bottom: "layer93-upsample-de" bottom: "layer62-shortcut" top: "layer94-route" } layer { name: "layer95-conv" type: "Convolution" bottom: "layer94-route" top: "layer95-conv" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer95-bn" type: "BatchNorm" bottom: "layer95-conv" top: "layer95-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer95-scale" type: "Scale" bottom: "layer95-conv" top: "layer95-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer95-act" type: "ReLU" bottom: "layer95-conv" top: "layer95-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer96-conv" type: "Convolution" bottom: "layer95-conv" top: "layer96-conv" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer96-bn" type: "BatchNorm" bottom: "layer96-conv" top: "layer96-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer96-scale" type: "Scale" bottom: "layer96-conv" top: "layer96-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer96-act" type: "ReLU" bottom: "layer96-conv" top: "layer96-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer97-conv" type: "Convolution" bottom: "layer96-conv" top: "layer97-conv" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer97-bn" type: "BatchNorm" bottom: "layer97-conv" top: "layer97-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer97-scale" type: "Scale" bottom: "layer97-conv" top: "layer97-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer97-act" type: "ReLU" bottom: "layer97-conv" top: "layer97-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer98-conv" type: "Convolution" bottom: "layer97-conv" top: "layer98-conv" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer98-bn" type: "BatchNorm" bottom: "layer98-conv" top: "layer98-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer98-scale" type: "Scale" bottom: "layer98-conv" top: "layer98-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer98-act" type: "ReLU" bottom: "layer98-conv" top: "layer98-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer99-conv" type: "Convolution" bottom: "layer98-conv" top: "layer99-conv" convolution_param { num_output: 64 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer99-bn" type: "BatchNorm" bottom: "layer99-conv" top: "layer99-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer99-scale" type: "Scale" bottom: "layer99-conv" top: "layer99-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer99-act" type: "ReLU" bottom: "layer99-conv" top: "layer99-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer100-conv" type: "Convolution" bottom: "layer99-conv" top: "layer100-conv" convolution_param { num_output: 64 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer100-bn" type: "BatchNorm" bottom: "layer100-conv" top: "layer100-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer100-scale" type: "Scale" bottom: "layer100-conv" top: "layer100-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer100-act" type: "ReLU" bottom: "layer100-conv" top: "layer100-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer101-conv-hand" type: "Convolution" bottom: "layer100-conv" top: "layer101-conv-hand" convolution_param { num_output: 18 bias_term: true pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer103-route" type: "Concat" bottom: "layer99-conv" top: "layer103-route" } layer { name: "layer104-conv" type: "Convolution" bottom: "layer103-route" top: "layer104-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer104-bn" type: "BatchNorm" bottom: "layer104-conv" top: "layer104-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer104-scale" type: "Scale" bottom: "layer104-conv" top: "layer104-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer104-act" type: "ReLU" bottom: "layer104-conv" top: "layer104-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer105-upsample-de" type: "Deconvolution" bottom: "layer104-conv" top: "layer105-upsample-de" convolution_param { stride: 2 kernel_size: 4 num_output: 32 pad: 1 bias_term: false weight_filler { type: "bilinear" } } } layer { name: "layer106-route" type: "Concat" bottom: "layer105-upsample-de" bottom: "layer37-shortcut" top: "layer106-route" } layer { name: "layer107-conv" type: "Convolution" bottom: "layer106-route" top: "layer107-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer107-bn" type: "BatchNorm" bottom: "layer107-conv" top: "layer107-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer107-scale" type: "Scale" bottom: "layer107-conv" top: "layer107-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer107-act" type: "ReLU" bottom: "layer107-conv" top: "layer107-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer108-conv" type: "Convolution" bottom: "layer107-conv" top: "layer108-conv" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer108-bn" type: "BatchNorm" bottom: "layer108-conv" top: "layer108-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer108-scale" type: "Scale" bottom: "layer108-conv" top: "layer108-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer108-act" type: "ReLU" bottom: "layer108-conv" top: "layer108-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer109-conv" type: "Convolution" bottom: "layer108-conv" top: "layer109-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer109-bn" type: "BatchNorm" bottom: "layer109-conv" top: "layer109-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer109-scale" type: "Scale" bottom: "layer109-conv" top: "layer109-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer109-act" type: "ReLU" bottom: "layer109-conv" top: "layer109-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer110-conv" type: "Convolution" bottom: "layer109-conv" top: "layer110-conv" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer110-bn" type: "BatchNorm" bottom: "layer110-conv" top: "layer110-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer110-scale" type: "Scale" bottom: "layer110-conv" top: "layer110-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer110-act" type: "ReLU" bottom: "layer110-conv" top: "layer110-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer111-conv" type: "Convolution" bottom: "layer110-conv" top: "layer111-conv" convolution_param { num_output: 32 bias_term: false pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer111-bn" type: "BatchNorm" bottom: "layer111-conv" top: "layer111-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer111-scale" type: "Scale" bottom: "layer111-conv" top: "layer111-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer111-act" type: "ReLU" bottom: "layer111-conv" top: "layer111-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer112-conv" type: "Convolution" bottom: "layer111-conv" top: "layer112-conv" convolution_param { num_output: 32 bias_term: false pad: 1 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "layer112-bn" type: "BatchNorm" bottom: "layer112-conv" top: "layer112-conv" batch_norm_param { eps: 0.0001 } } layer { name: "layer112-scale" type: "Scale" bottom: "layer112-conv" top: "layer112-conv" scale_param { filler { value: 1.0 } bias_term: true bias_filler { value: 0.0 } } } layer { name: "layer112-act" type: "ReLU" bottom: "layer112-conv" top: "layer112-conv" relu_param { negative_slope: 0.1 } } layer { name: "layer113-conv-hand" type: "Convolution" bottom: "layer112-conv" top: "layer113-conv-hand" convolution_param { num_output: 18 bias_term: true pad: 0 kernel_size: 1 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } }