TestNG++
Installation & Configuration Guide For MSVC Users

Arthur Yuan

ABSTRACT

This document guides you how to configure, install and use TestNG++ on Windows,
along with Microsoft Visual Studio.

1. CONFIGURATION, BUILDING & INSTALLATION

1.1 PREPARATION
1.2 CONFIGURATION
1.3 BUILDING & INSTALLATION

1w W W

2. USING TESTNG++ 8
2.1 CREATE PROJECTS 8
2.2 SET DEPENDENCIES 9
2.3 SETUP TEST GENERATOR 10
2.4 CREATE SOURCE FILE 12
2.5 SETUP INCLUDE PATH & LINKING LIBRARIES 13
2.6 CREATE & WRITING TEST 15
2.7 SETUP THE DEBUGGING COMMAND LINE 15
2.8 BUILDING & RUNNING TEST 16
2.9 GET THE EXAMPLE 17

1. Configuration, Building & Installation

1.1 Preparation

Firstly, go to the download page of TestNG++ web site
(http://code.google.com/p/test-ng-pp), choose a certain version of source
archive and download it. Alternatively, you can check out the latest source code
directly from SVN repository (http://test-ng-pp.google.com/svn/truck).
However, it is usually not as stable as the formal released version.

TestNG++ uses cmake (http: //www.cmake.org) as the building system. Besides,
the Test Generator of TestNG++ is written in python. Therefore, before you are
able to build TestNG++, you need to make sure you have cmake and python
installed on your system.

If you are going to use TestNG++ with Microsoft Visual Studio, you also need to
have it installed on your system.

After all these get ready, uncompress the source code tar ball to somewhere,
C:\arthur, for instance. Then you get C:\arthur\testngpp-1.0. Afterwards,
create a new folder in which all cmake generated files & build outputs will be
placed. In this example, the folder we create is C:\arthur\testngpp-1.0\build.

1.2 Configuration

Now, launch the cmake-guil. Set the source code path in “Where is the source
code”, and the build path in “Where to build the binaries”.

. CHake 2.8.0 — C:farthur/testngpp—1.0/build
File Tools Options Help

fhere is the source code: C:farthur/testngpp-1.0
Where to build the binaries: |C:/arthur/testngpp-1.0/build v
Search: Simple View v Remove Entry
Hame Value

Press Configure to update and display new walues in red, then press Generate to generate selected build files.

Generate Current Generator: Nome

1You can also choose to use command line of cmake, here we use cmake-gui for
the sake of demonstration.

Then, click the button “Configure”, you will see a pop-up window like this:

.+ cmake—gui

Specify the generator for this project
Visual Studie 9 2008 v

(3) Use default native compilers
() Specify native compilers
O Specify toolchain file for cross—compiling

() Specify options for cross—compiling

<Back | Finish][Cancel]

Choose a generator according to your Visual Studio version, and select “Use
default native compilers”, and then click the button “Finish”, which will start
the configuration process.

After the configuration finishes successfully, modify the value of the variable
“CMAKE_INSTALL_PREFIX” to the path where you are going to install TestNG++.
On Windows, its default value is C:\ Program Files\testngpp.

. CHake 2.8.0 — C:/arthur/testngpp—1.0/build

File Tools Options Help

fhere is the source code: {Ci/arthurftestngpp'l.ﬂ ‘ Browse Source. ..

Where to build the binaries: |C:/arthur/testngpp=1.0/build | [Browse Build ..
Search: l lSimple View vl [# Add Entry J [x Remove Entry J

Hame Value ‘
CMAKE_TNSTALL PREFIX C:/arthur/testngpp|

1)

D] 3 'OUND

Press Configure to update and display new wvalues in red, then press Generate to generate selected build files.
Generate Current Generator: Visual Studio 9 2008 [:]

Check for working C compiler: cl

Check for working C compiler: cl -- works
Detecting C compiler ABI info

Detecting C compiler ABI info - done

Check for working CXX compiler: cl

Check for working CXX compiler: cl -- works
Detecting CXX compiler ABI info

Detecting CXX compiler ABI info - done
Found PythonInterp: C:/PythonZé/python.exe
Configuring done

After setting the installation path, click the “Configure” button again, then you’ll
get:

+ CHake 2.8.0 — C:/farthur/testngpp—1.0/build

File Tools

Options Help

Where is the source code:

lC:I'srthurftestngpp-l .0

‘ [Browse Source. ..]

fhere to build the binaries: lCZ/art}mr/testngpp-LUf’build

v‘ [Browse Build. ..]

Search: ‘ [Simple View V‘ [% Add Entry] % Remove Entry
Hame Value

CMAKE_INSTALL_PREFIX C:/farthur/testngpp

DL_LIBRARY DL_LIBRARY-NOTFOUND

LTDL_LIBRARY LTDL_LIBRARY-HOTFOUND

Press Configure to update and display new walues in red, then press Generate to generate selected build files.

L]

E Configure i [Generate] Current Generator: Visual Studie 9 2008

Conficquring done

Click the “Generate” button to generate the Visual Studio project files.

1.3 Building & Installation

Now, close the “cmake-gui” window, open the folder c:\arthur\testngpp-
1.0\build. Here you can see the solution and project files, as well as others.

& build

Y] B#@ IA®D
Qre-) ¥ Pmx | oamx [E-

HIAE (D) |5 C: \ar thur\testngpp-1. O\build

FEE FEW B 0D >

v B3

e

’/I scripts
- cmake_install. emake
CHAKE 37 %
3 KB

ﬂ testngpp. sln
Mi soft Visual
G Version: Visual

M RAES

09 Bl

] #{%F’l‘l‘&f‘#é’%ﬁ*ﬁﬁ]
|

2 HEFLHE

(==
u samples
=) ALL_BUILD. veproj

sre | VCH Project

= 15 KB

y INSTALL. weproj

R VOH Project
= 16 KB

CMakeCache. txt
BES T

1S K8

HeE

b testngpp-1.0
) B
o =

ZERO_CHECK. veproj
VCH Project
17T KB

9 B
@ ALSE

Double click the solution file “testngpp.sln” to open it in Visual Studio.

In Visual Studio, press F7 to build the solution. After TestNG++ is built
successfully, right click the project “INSTALL” and select “build” to install

TestNG++ to the folder “C:\arthur\testngpp”, which was set in previous
configuration.

A Solution " testngpy’ (14 projects)
+ 1 ALL_BVILD

+ :;1 cleanup—testngppgen

5 a4 compile~testngppzen

SR TSTALL |

+ 33 sample [¥7 Bmld

+ :E sanple_s Rebuild

* __'E testingpp

+ j testingpp Cleap

& :‘1 tesingpp Project Only »
* tE testngpp

: :E testngpp Project Dependencies
3 testagp Project Build Order.
33 testngpp

. "E ZERD CME Custom Build Eules

Tool Build Order.

L4221 [N

After the installation process finishes successfully, open the folder
“C:\arthur\testngpp”. You can see the following directory structure:

=) testnzpp
= |) 3rdparty
+ |) boost
) bin
+ |) include
) 1lib
=) testngpp
+) generator
) listener

While using MSVC, TestNG++ uses the “typeof” library of boost; all related
libraries of which were installed in “3rdparty\boost”.

In “bin”, testngpp-runner is placed.

The header files of TestNG++ are installed in “include”, you are going to need to
include them when you start to write test.

Library testngpp.lib locates in “lib”. When you build your tests, you need to link
it into your test modules.

Test Generator is written in python, the compiled python byte code files are
put in “testngpp\generator”.

Although users can develop their own Test Listener with the mechanisms
provided by TestNG++, TestNG++ offers two Test Listeners for immediate use.

e Stdout Listener
¢ XML Listener.

The module files are testngpplistener.dll and testngppxmllistener.dll
respectively, which were installed in “testngpp\listener”.

2. Using TestNG++

There are many patterns of using TestNG++ in the environment of Microsoft
Visual Studio. Here gives one possible pattern to demonstrate the usage of
TestNG++.

2.1 Create Projects

Create your SUT (System Under Test) project as a win32 static library one?;
and create a Test project, which should be a win32 dynamic library project.

Please note that when you create Test project, you should make sure “Empty
project” is selected.

¥in32 Application ¥Wizard — Another

’ \ ' Application Settings
L :;,\;,L‘t“‘\\‘_?'

v

Overview Application type: Add common header files for:
Application Settings O Windows application
() Console application

®DLL

() Static library
Additional options:

Empty project

[Finish][Cancel]

For instance, we created a SUT project named MyProject, and the Test project is
MyProjectTest.

2 Although in reality, you project is an executable or a dynamic library, but still,
you can create another static library project as the SUT project, and let your real
project depends on it.

2.2 Set Dependencies

Then we set MyProjectTest as the startup project:

= :ﬂ MyProject
d Header Files
_J Resource Files
d Source Files
=) ReadMe. txt

= :B ByFProjectTest

A Hea 44 pyild

- Res
3 Sou Rebuild
Clean
Project Only »

Frofile Guided Optimization »
Project Dependencies. ..
Project Bupld Order
Custom Build Rules. ..
Tool Build Order
Add >
References
&3 Yiew Class Diagran
Set as Startlp Froject
_\QSolutx on Ex; Debug »
Dutput & Cut
Show output £ 4 Paste \ ‘
X Remoye

And by “Project Dependencies”, set MyProject as the dependency of
MyProjectTest.

Project Dependencies

...

Projects:
\MyProjectTest V‘

Depends on:

v MyProject

[ok || Canca |

2.3 Setup Test Generator

Now setup the “Custom Build Rules” of MyProjectTest.

m MyProject
. Header Files

. Resouwrce Files —
_3 Source Filex -]
= ReadMe txt
‘Bj){eadu Fil [£f] Build
- Resouwrce F Rebuild
d Source Fi1l
Clean
Project Only »
Profile Guided Optimization »
Project Dependencies
Project Build Order. . |
Custom Build Eules. .. 1
Tool Build Order. ..
Add >
References. ..
‘:.';4. View Class Disgram
Set az StartlUp Project
__\QSolutx on Explorer | Debug » L

In the popup window, click the “New Rule File...” button.

Visual C++ Custom Build Rule Files ?)X]
Available Rule Files:
Name File Exten .. | FPath [Hew Rule File. ..]
[[JiLicense Compiler *. liex c:\Program Files\Microsoft... | L
[[] Microsoft Macre A... *. asm c:\Program Files\Microsoft... !

Find Existing. ..]

[
[Refresh List]

Contained Custom Build Rules:

HName File Exten... Command Line

0K | [Cancel

Set the rule name, rule file name and location; then click the “Add Build Rule...”
button:

Few Rule File 2[E3]

Display Name:
TestGenerator

File Name:

TestGenerator. rules

Directory:

C:\testngpp-samples\win32-projectsMyProject ’ Browse. ..]

Custom Build Rules:

Hame File Extens. .. [Add Build Rule...]

[ox || camca |

In the popup windows, write the command in the “command line”, like this:

Custom Build Rule Properties:
#Additional Dependencies
Batching Separator

v TR -« 2312 -0 ByProjectTest. cc linputs] v

" N U\ \testngppitestngpp'generatoritestnzppgen. pye” —e gb2312 -o MyProjectTest. cc [inputs]l

python. exe

|| ‘1 Command Line

This command line is actually an invocation to the Test Generator. The option
“-0” is used to specify the generated output file, and the option “-e” is for
specifying the encoding of test source files. If this option is not specified, by
default, the encoding is “utf-8”. In this example, we set it as “gb2312".

Then we set other fields as following:

Custom Build Rule Properties:
Additional Dependencies
Batching Separator

Command Line python. exe “. . \..\.. \testngpp\testngpp\g:
Display Name TestGenerator

Execution Description Generating Test. ..

File Extensions x h

Hame Test Generator

Outputs ByProjectTest. cc

Show Only Rule Properties True

Supports File Batching True v

You may have noticed that we set the “File Extensions” as “*.h”, which means, in
MyProjectTest, all headers with the extension “*.h” are thought as test source
files, you should no longer use this extension for any non-test file. If you intent
to use “*.h” as the extension of normal headers, you should set “File Extensions”
as different value, “*.hpp”, for instance.

Now click “OK” button to go back to the window, here you must make sure the
new rules we created are selected.

Visual C+ Custom Build Rule Files 3

Available Rule Files:

Hame File Exten .. Path | Hew Rule File .. |
[[] License Compiler *. Lliex c:\Program Files\Microsoft. .. T ;
[[] Microsoft Macro A... *. asm c:\Program Files'Microsoft... |§-° = e l
TestGenerator *. h C:\testngpp-samples'win32-. .. [Find Existing. ..]

[Refresh List]

Contained Custom Build Rules:

Hame File Exten... Command Line
Test Generator *. h python. exe “.. % . % .\testngpp\testngpp'genera. ..

| ok || cemca |

2.4 Create Source File

Change the name of “Header Files” filter to “Test Files”. It’s simply for clarity.
Actually, it does not matter at all whatever name it is.

_jl Solution 'MyProject’ (2 projects)
= -_-ﬂ MyFroject
+ - |_| Header Files
_J Resource Files
+ - | Source Files
l‘{l ReadMe. txt
= :"3 ByProjectTest
RN Tect Files
+ - | Source Files

Then create a source file “AllTests.cpp” or whatever names you prefer in project
MyProjectTest.

Then open “AllTests.cpp” and edit it. It only has one line source code.

_‘j Solution ‘MyProject’ (2 projects)
= 33 MyFroject
+/ | Header Files
|_J Resource Files
+ |_J Source Files
:‘[ReadMe. txt
= E ByProjectTest
+/ _J Test Files
= 7 Source Files

il ALLT et cpp |

#include "MyProjectTest.cc”

Yes, the included file is the one generated by Test Generator. We adopt this
weird way for two reasons:

1. We have to have a source code file in project MyProjectTest, otherwise,
we can neither set the compiling option easily nor compile the project to
get the DLL we need.

2. Ifwe add “MyProjectTest.cc” into project directly, because its content is
generated according the contents of test files and changes always, you
will get annoyed constantly by the message of reminding you to reload
this file because MSVC has detected the change of it content.

Actually, it's merely a cheap way to workaround these trouble.

2.5 Setup Include Path & Linking Libraries

Now add the paths of TestNG++ headers and boost, as well as the path of
headers of project MyProject, to the “Additional Include Directories” of
project MyProjectTest.

Additional Include Directories

ek x| +] +

$ SolutionDir)..\.. %include
$ SolutionDir)..\.. ‘\testngpp'3rdparty
$(SolutionDir)..\..\testngppiinclude

<

K%

Inherited walues:

Inherit from parent or project defaults

| ok || cancel |

Also, add the library path of TestNG++ to the “Additional Library Directories”.

Additional Library Directories

FE

$ SolutionDir)..%. . ‘testngppilib

&

|

Inherited walues:

[¥] Inherit from parent or project defaults
[ok || cencer]A

And the TestNG++ library should be added to “Additional Dependencies” as
well.

Additional Dependencies

testngpp. lib

Inherited walues:

kernel32.1ib
user32. 1lib
gdi32. 1ib
winspool. 1lib
comdlg32. 11b

v

[¥] Inherit from parent or proiect defaults

o J(emea]

2.6 Create & Writing Test

Now create test sources, write test, and implement the SUT.

‘_J Solution 'MyProject’ (2 projects)
= 5 MyProject
(=} .7 Header Files
] CBar.h
] CFoo.h
1 Resource Files
= |7 Source Files
Cﬂ CBar. cpp
C'_‘1 CFoo. cpp
E] ReadMe. txt
=] .Zﬁ ByProjectTest
(=) |7 Test Files
0|
|h] TestFoo.h
(= |7 Source Files
CL‘] M1Tests. cpp

[#include <testngpp/testngpp.hpp>
#include <CBar.h>

FIXTURE (CBar)
{
TEST (should be able to multiply 2 integers)
{
ASSERT_EQ(6, CBar::multiply (2, 3));
}

TEST (should be able to div 2 integers)

{
INFO("the result should be double type");
ASSERT_EQ(3, CBar::divide(6, 2));

}

TEST (if devident is 0 => throw exception)
{
WARN ("not implemented yet");

}
“ b

2.7 Setup The Debugging Command Line

Now set the debugging command line of project MyProjectTest. The command is
TestNG++ Test Runner.

HEyProjectTest Property Pages @@

Configuration: [Acti'fe (Debug) V] Platform: Iﬁctive (#in32) v] [T e []
Common Properties Debugger to launch:
=} Configuration Properties ILocaIWindnws Debugger v‘
General
g;'g:fgmg Command $(SolutionDir)..\.. \testngpp\bin\testngpp-runner.
Command Arguments $ (OutDir)\§ (TargetName) -L"$ (SolutionDir)..\.. \te

= Linker

(SolutionDir)..\..\testngpp\bin\testngpp-runner. exe

Cancel
"

o
5
=
[y

Rrowse Tnfarmatian

And the argument could be set like this:

HyProjectTest Property Pages ? X
Configuration: Iﬁctive (Debug) Vl Platform: IActive (#in32) Vl [Configuration Manager. ..]
Common Properties Debugger to launch:
=} Configuration Properties ILocaI Windows Debugger v‘
General
Debugging " - - -
C/CH Command $ (SolutionDir)..\..\testngpp\bin‘testngpp-runner.

= Linker Command Arguments $ (OutDir)\$ (TargetName) -L$ (SolutionDir).. .. \te

Working Director:

Command Arguments

(0utDir)\$ (TargetName) -L"$ (SolutionDir)..%. . \testngpphtestngppilistener” -1"testngppstdoutlistener —¢ —v" ‘

About the options and arguments of Test Runner, please refer TestNG++ User
Manual.

2.8 Building & Running Test

Press “Ctl + F5” to build tests and run them, if everything goes well, the
TestNG++ Stdout Listener will report the test result.

loading testngppstdoutlistener ... OK

MyProjectTest::CBar::should be able to multiply 2 integers
(0 us)
MyProjectTest: :CBar::should be able to div 2 integers
TestBar.h:15: the result should be double type
(0 us)
MyProjectTest::CBar::if devident is O => throw exception
WARNING TestBar.h:21: not implemented yet
oK (0 us)

MyProjectTest::CFoo::should be able to add up 2 integers
(0 us)
MyProjectTest::CFoo::should be able to substract 2 integers

RESULT
5 cases from 1 suites ran successfully.

The whole example could be downloaded from testngpp-samples
(http://code.google.com/p/testngpp-samples)

